

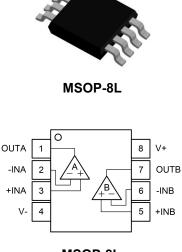
180MHz,Rail-to-Rail I/O,CMOS Operational Amplifiers

Descriptions

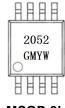
The WS72052 is a dual high-speed, voltage-feedback CMOS operational amplifier. It is designed for video and other applications which require wide bandwidth. It is unity-gain stable and can provide large output current. Quiescent current is only 3.6mA/Amplifier.

The WS72052 is optimized for operation on single or dual supplies as low as 2.5V (\pm 1.25V) and up to 5.5V (\pm 2.75V). The output swing is within 15mV of the rails, supporting wide dynamic range. It is suitable for applications requiring high continuous output current. It is completely independent circuitry for lowest crosstalk and freedom from interaction.

The WS72052 is available with MSL 3 Level in MSOP-8L package. Standard products are Pb-Free and halogen-Free.


- Video Processing
- Ultrasound
- Optical Networking, Tunable Lasers
- Photo-diode Trans-impedance Amplifiers
- Active Filters
- High-Speed Integrator
- Analog-to-Digital(A/D)
 Converter Input Buffers
- Digital-to-Analog (D/A)
 Converter Output Amplifiers

Features


- -3dB Bandwidth: 180MHz
- High Slew Rate: 130V/µs
- Low Noise: $7nV/\sqrt{Hz}$ at 1MHz
- Rail-to-Rail Input and Output
- Low Input Bias Current: 2pA
- Quiescent Current: 3.6mA/Amplifier(TYP)
- 2.5V to 5.5V Single Supply or ±1.25V to ±2.75V Dual Power Supplies
- -40°C to +125°C Operating Temperature Range

WS72052

Http://www.omnivision-group.com

MSOP-8L Pin configuration (Top view)

MSOP-8L

Marking

2052 = Device code

- GM = Special code
 - Y = Year code
 - W = Week code

Order Information

Device	Package	Shipping
WS72052M-8/TR	MSOP-8L	4000/Reel &Tape

Pin Descriptions

Pin Number	Symbol	Descriptions	
1	OUTA	Output of Channel A	
2	-INA	Inverting input of Channel A	
3	+INA	on-inverting input of Channel A	
4	V-	Negative supply	
5	+INB	Non-inverting input of Channel B	
6	-INB	Inverting input of Channel B	
7	OUTB	Output of Channel B	
8	V+	Positive supply	

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage, ([V+] - [V-])	Vs ⁽²⁾	5.5	V
Operating Supply Voltage Range	V _{IDR}	2.5 to 5.5	V
All Other Pins	V _{ICR}	(V-)-0.3 to (V+)+0.3	V
Operating Fee-Air Temperature Range	T _A	-40 to 125	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Junction Temperature Range	TJ	150	°C
Lead Temperature Range	TL	260	°C

Note:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. All voltage values, except differential voltage are with respect to network terminal.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum level	Unit
НВМ	Human Body Model ESD	MIL-STD-883H Method 3015.8	±8000	V
	······································	JEDEC-EIA/JESD22-A114A		
MM	Machine Model ESD	JEDEC-EIA/JESD22-A115	±400	V
CDM	Charged Device Model ESD	JEDEC-EIA/JESD22-C101E	±2000	V

Note:

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Will Semiconductor Ltd. recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Electronics Characteristics

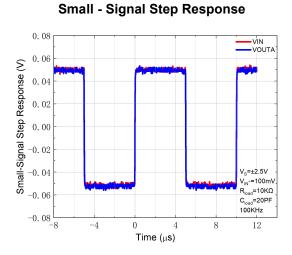
At $T_A = 25^{\circ}$ C, $V_S = 2.7$ V to 5.5V, $V_{CM} = V_S/2$, $V_{OUT} = V_S/2$, $R_L = 1$ k Ω connected to $V_S/2$, unless otherwise noted.

Symbol	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
NPUT CH	IARACTERISTICS						
Vos	Input Offset Voltage	Vs=5V		1	6	mV	
Δ V _{OS} / Δ T	Input Offset Voltage	-40°C≪T _A ≪+125°C		6.5		µV/°C	
Ι _Β	Input Bias Current			2		pА	
V _{CM}	Input Common Mode Voltage Range		(-Vs)-0.1		(+Vs)-0.1	V	
CMRR	Common Mode Rejection	V_{S} =5.5V,-0.1V< V_{CM} <5.6V		440		μV/V	
CIMITAT	Ratio	V_{S} =5.5V,-0.1V< V_{CM} <3.5V		20		μν/ν	
٨	Open-Loop Voltage Gain	$(-V_{S})+0.3V < V_{OUT} < (+V_{S})-0.3V,R_{L}=1k\Omega$		114		dB	
A _{OL}	Open-Loop voltage Gain	(-V _S)+0.4V <v<sub>OUT<(+V_S)-0.4V,R_L=1kΩ</v<sub>		116		dB	
OUTPUT	CHARACTERISTICS						
V _{OH}	Output Voltage Swing from Vs	V_{S} =5V, R _L =1k Ω		15	30	mV	
V _{OL}	Output Voltage Swing from 0	V_{S} =5V, R _L =1k Ω		20	35	mV	
	Short-Circuit Current	V _S =5V	212	242			
ISOURCE		V _S =3V		90		mA	
	Short-Circuit Current	Vs=5V	170	200		mA	
ISINK		V _S =3V		80			
	Closed-Loop Output Impedance	f<100kHz		0.3		Ω	
DYNAMIC	C PERFORMANCE				1		
-3dB Small-Signal		G=+1,V _{OUT} =100mV _{PP} ,R _F =25Ω		180			
f- _{3dB}	Bandwidth	G=+2,V _{OUT} =100mV _{PP}		130		MHz	
GBP	Gain-Bandwidth Product	G=+10,V _{OUT} =100mV _{PP}		130		MHz	
	Bandwidth for 0.1dB Gain Flatness	G=+2,V _{OUT} =100mV _{PP}		30		MHz	
		Vs=5V,Vout=2Vpp		130			
SR	Slew Rate	Vs=5V,V _{OUT} =4V _{PP}		135		V/µs	
		G=+1,V _{OUT} =200mV _{PP} ,10% to 90%		5			
	Rise-and-Fall Time	G=+1,V _{OUT} =2V _{PP} ,10% to 90%		11		ns	
		V _{OUT} =2V _{PP}		17			
	Settling Time to 0.1%	V _{OUT} =4V _{PP}		35		ns	
	Overload Recovery Time	V _{IN} × G=Vs		42		ns	
	Crosstalk	f=5MHz		-102		dB	
POWER S				-102		uВ	
OWER 3			2.7		5.5	1/	
Vs	Specified Voltage Range					V V	
	Operating Voltage Range		2.5		5.5	V	

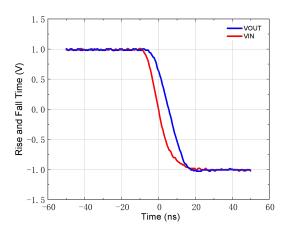
Electronics Characteristics (Continued)

At $T_A = 25^{\circ}$ C, $V_S = 2.7$ V to 5.5V, $V_{CM} = V_S/2$, $V_{OUT} = V_S/2$, $R_L = 1$ k Ω connected to $V_S/2$, unless otherwise noted.

ΙQ	Quiescent Current/Amplifier	V _S =5V, I _{OUT} =0		3.6	5	mA
PSRR	Power Supply Rejection Ratio	V _S =2.7V to 5.5V, V _{CM} =(V _S /2)-0.55V		30		μV/V
NOISE / D	ISTORTION PERFORMAN	ICE				
en	Input Voltage Noise	f=1MHz		7		nV/Hz
in	Input Current Noise Density	f=1MHz		10		fA/Hz
	Harmonic Distortion (2nd-Harmonic)	G=+1,f=1MHz,V _{OUT} =2V _{PP} , R _L =200Ω,V _{CM} =1.5V		-66		dBc
	Harmonic Distortion (3rd-Harmonic)	G=+1,f=1MHz,V _{OUT} =2V _{PP} , R _L =200Ω,V _{CM} =1.5V		-70		dBc
THERMAL SHUTDOWN						
	Thermal Shutdown			150		°C
	Reset from Shutdown			130		°C

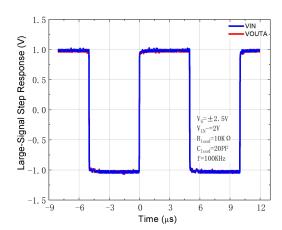

Note:

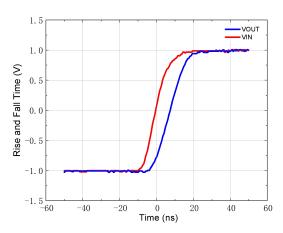
- 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
- 2. A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.

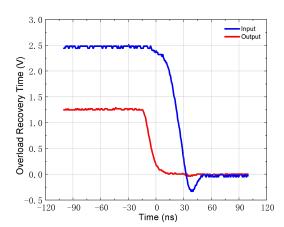


Typical Characteristics

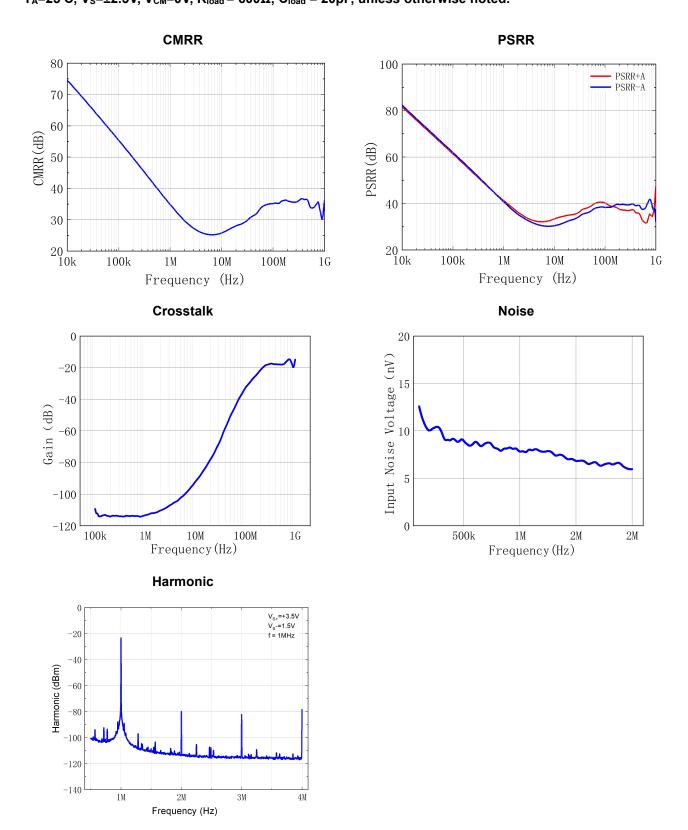
At $T_A = 25^{\circ}C$, VS=±2.5V, VCM=0V, Rload = 600 Ω , Cload = 20pF, unless otherwise noted.

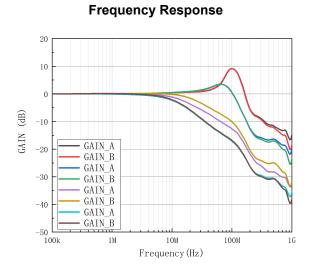

Rise and Fall Time

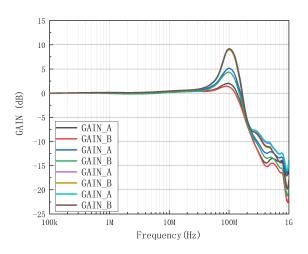

Bandwidth


Large - Signal Step Response

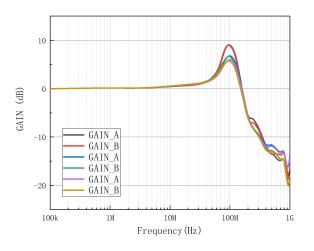
Rise and Fall Time




Typical Characteristics (continued) T_A=25°C, V_S= \pm 2.5V, V_{CM}=0V, R_{load} = 600 Ω , C_{load} = 20pF, unless otherwise noted.

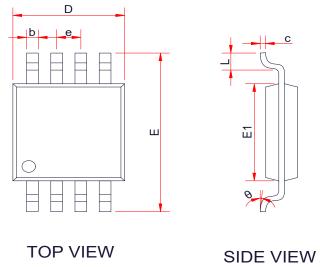


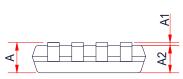
Typical Characteristics (continued)


 $T_{A}\text{=}25^{\circ}\text{C}, \ V_{S}\text{=}\pm2.5\text{V}, \ V_{\text{CM}}\text{=}0\text{V}, \ R_{\text{load}}\text{=}600\Omega, \ C_{\text{load}}\text{=}20\text{pF}, \ \text{unless otherwise noted}.$

Frequency Response (2)

Frequency Response (3)





PACKAGE OUTLINE DIMENSIONS

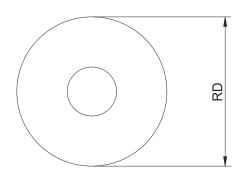
MSOP-8L

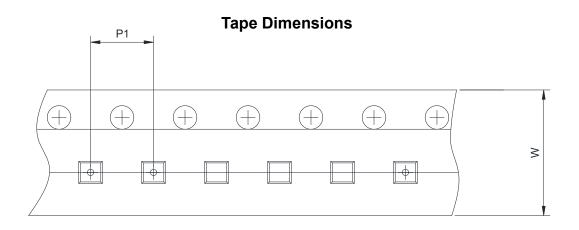
С

SIDE VIEW

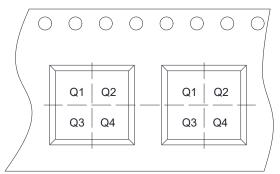
Symbol	Dimensions In Millimeters (mm)				
	Min.	Min. Typ.			
A	-	-	1.10		
A1	0.02	-	0.15		
A2	0.75	0.80	0.95		
b	0.25	0.25 -			
с	0.09	-	0.23		
D	2.90	3.00	3.10		
E	4.75	4.90	5.05		
E1	2.90	2.90 3.00			
е	0.65 BSC				
L	0.40	-	0.80		
θ	0°	0° - 6°			

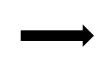
Will Semiconductor Ltd.


8



TAPE AND REEL INFORMATION


MSOP-8L


Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	Tinch	🔽 13inch		
W	Overall width of the carrier tape	🔲 8mm	🔽 12mm		
P1	Pitch between successive cavity centers	🗖 2mm	🔲 4mm	🗹 8mm	
Pin1	Pin1 Quadrant	🔽 Q1	🗖 Q2	🗖 Q3	🗖 Q4