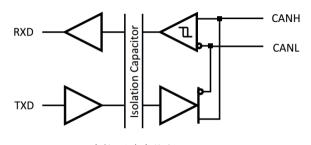


特点

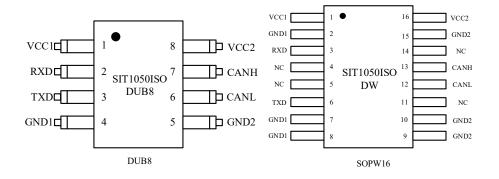
产品外形示意图

- ▶ 完全兼容"ISO 11898"标准;
- ▶ 内置过温保护;
- ▶ 100kV/μs 瞬态抗扰度;
- ▶ 显性超时功能;
- ▶ -40V 至 40V 的总线故障保护;
- ▶ I/O 电压范围支持 3.3V 和 5V MCU;
- ▶ 低环路延迟: 150ns (典型值), 210ns (最大值);
- ▶ 至少允许 110 个节点连接到总线;
- ▶ 高速 CAN, 传输速率可达到 1Mbps;
- ▶ 高抗电磁干扰能力;
- ▶ 提供宽体 SOPW16 封装,隔离耐压 5000V_{RMS}, 提供宽体 DUB8 封装,隔离耐压 2500V_{RMS}。



提供绿色环保无铅封装

描述


SIT1050ISO 是一款电容隔离的 CAN 转发器,ISO11898 标准的技术规范,含有多个由二氧化硅(SiO2)绝缘隔栅分开的逻辑输入和输出缓冲器,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力。

参数	符号	测试条件	最小	最大	单位
宽体 DUB8 隔离耐压	$ m V_{ISO}$		2500	typ	V_{RMS}
宽体 SOPW16 隔离耐压	$V_{\rm ISO}$		5000	typ	V_{RMS}
瞬态抗扰度	CMTI		50	100	kV/μs
供电电压	V_{cc}		4.5	5.5	V
最大传输速率	1/t _{bit}	非归零码	1		Mbaud
CANH、CANL 输入输出电压	V_{can}		-40	+40	V
总线差分电压	$V_{ m diff}$		1.5	3.0	V
高电平输入电压	$V_{ m IH}$	TXD	2	5.25	V
低电平输入电压	$V_{\rm IL}$	TXD	0	0.8	V
高电平输出电流	ī	驱动器	-70		mA
同电干制凸电机 	I_{OH}	接收器	-4		mA
低电平输出电流	I_{OL}	驱动器		70	mA
成七十十十七九	IOL	接收器		4	mA
结温	T_j		-40	150	$^{\circ}\mathrm{C}$

功能示意框图

引脚分布图

引脚定义

DUB8 引脚定义

引脚序号	引脚名称	引脚功能
1	V_{CC1}	逻辑侧电源, 范围 3.0V~5.5V。
2	RXD	接收器数据输出端。
3	TXD	发送器数据输入端。
4	GND1	逻辑侧地。
5	GND2	总线侧地。
6	CANL	低电位 CAN 电压输入输出端。
7	CANH	高电位 CAN 电压输入输出端。
8	$V_{\rm CC2}$	总线侧电源, 范围 4.5V~5.5V。

SOPW16 引脚定义

引脚序号	引脚名称	引脚功能
1	$V_{\rm CC1}$	逻辑侧电源, 范围 3.0V~5.5V。
2	GND1	逻辑侧地。

具有隔离功能,1Mbps,高速 CAN 总线收发器

引脚序号	引脚名称	引脚功能
3	RXD	接收器数据输出端。
4	NC	不连接,请勿连接该引脚。
5	NC	不连接,请勿连接该引脚。
6	TXD	发送器数据输入端。
7	GND1	逻辑侧地。
8	GND1	逻辑侧地。
9	GND2	总线侧地。
10	GND2	总线侧地。
11	NC	不连接,请勿连接该引脚。
12	CANL	低电位 CAN 电压输入输出端。
13	CANN	高电位 CAN 电压输入输出端。
14	NC	不连接,请勿连接该引脚。
15	GND2	总线侧地。
16	$ m V_{CC2}$	总线侧电源, 范围 4.5V~5.5V。

极限参数

参数	符号	大小	单位
电源电压	$V_{CC1},\ V_{CC2}$	-0.5~+6.5	V
TXD 输入电压	TXD	-0.5~V _{CC1} +0.5	V
总线侧输入电压	CANL, CANH	-40~40	V
6,7号引脚瞬态电压 见 <u>图7</u>	$ m V_{tr}$	-200~+200	V
存储温度范围	$T_{ m stg}$	-40~150	°C
结温	$T_{\rm j}$	-40~150	°C
焊接温度范围		300	°C

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

总线发送器直流特性

参数	符号	测试条件	最小	典型	最大	单位
CANH 输出电压(显 性)	V _{OH(D)}	VI=0V,	2.9	3.4	4.5	V
CANL 输出电压(显 性)	V _{OL(D)}	RL=60Ω, <u>图 1</u> 、 <u>图 2</u>	0.8		1.5	V
总线输出差分电压 (隐性)	$V_{O(R)}$	VI=3V, RL=60Ω, <u>图 1、图 2</u>	2	2.5	3	V
总线输出差分电压 (显性)	$V_{\text{OD(D)}}$	VI=0V,RL=60Ω, <u>图 1</u> 、 <u>图 2</u>	1.5		3	V
总线差分输出电压 (隐性)	$V_{\mathrm{OD(R)}}$	VI=3V, <u>图 1、图 2</u>	-0.012		0.012	V
(な 注)		VI=3V,无负载	-0.5		0.05	V
显性输出电压对称性	V _{dom(TX)sym}	$V_{\text{dom(TX)sym}} = V_{\text{CC}}$ $V_{\text{CANH}} - V_{\text{CANL}}$	-400		400	mV
输出电压对称性	V_{TXsym}	$V_{TXsym} = V_{CANH} + V_{CANL}$	$0.9V_{CC}$		1.1V _{CC}	V
共模输出电压	V_{OC}	图 8	2	2.5	3	V
显性隐性共模输出电 压差	$\triangle V_{OC}$			30		mV
		CANH=-12V, CANL=open,	-105	-72		mA
		CANH=12V, CANL=open,		0.36	1	mA
短路输出电流 Ios	los	CANL=-12V, CANH=open,	-1	0.5		mA
		CANL=12V, CANH=open,		71	105	mA
隐性输出电流	$I_{O(R)}$	-27V <canh<32v 0<vcc<5.25v< td=""><td>-2.0</td><td></td><td>2.5</td><td>mA</td></vcc<5.25v<></canh<32v 	-2.0		2.5	mA
共模抗扰度	CMTI	图 12	±50		±100	kV/μs

(如无另外说明,V_{CCI}=V_{CC2}=5V±10%,Temp=T_{MIN}~T_{MAX},典型值在 V_{CCI}=V_{CC2}=+5V,Temp=25℃。)

总线发送器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延时(低到高)	tPLH	图 4	31	65	120	ns
传播延时(高到低)	tPHL		25	45	90	ns
差分输出上升延时间	tr			25		ns
差分输出下降延时间	tf			50		ns
显性超时时间	t _{dom}	图 10	300	450	700	μs

(如无另外说明, $V_{\text{CC1}} = V_{\text{CC2}} = 5V \pm 10\%$,Temp= $T_{\text{MIN}} \sim T_{\text{MAX}}$,典型值在 $V_{\text{CC1}} = V_{\text{CC2}} = +5V$,Temp= 25°C 。)

总线接收器直流特性

参数	符号	测试条件	最小	典型	最大	单位
正输入阈值	V_{IT^+}	图 5		800	900	mV
负输入阈值	V _{IT} -		500	650		
比较器阈值迟滞区间	V _{HYS}		100	125		
高电平输出电压	V_{OH}	IO=-2mA, <u>图 6</u>	4	4.6		V
低电平输出电压	V_{OL}	IO=2mA, <u>图 6</u>		0.2	0.4	V
掉电时总线输入电流	$I_{(OFF)}$	CANH 或 CANL=5V, 其它引脚=0V		165	250	μΑ
CANH、CANL 对地 的输入电容	C _I			13		pF
CANH、CANL 差分 输入电容	C_{ID}			5		pF
CANH、CANL 输入 电阻	R_{IN}	TXD=3V	15	30	40	kΩ
CANH、CANL 差分 输入电阻	R_{ID}	17D-3 V	30		80	kΩ
RI(CANH)、 RIN(CANL)失配度	RI _{match}	CANH=CANL	-3%		3%	
共模电压范围	V_{COM}		-12		12	V

(如无另外说明,V_{CCI}=V_{CC2}=5V±10%,Temp=T_{MIN}~T_{MAX},典型值在 V_{CCI}=V_{CC2}=+5V,Temp=25℃。)

总线接收器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延迟 (低到高)	$t_{\rm PLH}$	图 6	60	100	130	ns
传播延迟(高到低)	$t_{ m PHL}$		45	70	105	ns
RXD 信号上升时间	$t_{\rm r}$			8		ns
RXD 信号下降时间	t_{f}			8		ns

(如无另外说明,V_{CC1}=V_{CC2}=5V±10%,Temp=T_{MIN}~T_{MAX},典型值在 V_{CC1}=V_{CC2}=+5V,Temp=25℃。)

器件开关特性

参数	符号	测试条件	最小	典型	最大	单位
环路延迟 1,驱动器 输入到接收器输出, 隐性到显性	$t_{ m d(LOOP1)}$	图 9	112		210	ns
环路延迟 2,驱动器输入到接收器输出,显性到隐性	$t_{d(LOOP2)}$		112		210	ns

(如无另外说明, $V_{CC1}=V_{CC2}=5V\pm10\%$,Temp= $T_{MIN}\sim T_{MAX}$,典型值在 $V_{CC1}=V_{CC2}=+5V$,Temp=25°C。)

逻辑侧直流特性

参数	符号	测试条件	最小	典型	最大	单位
高电平输入电压	$ m V_{IH}$	TXD 引脚	2			V
低电平输入电压	$ m V_{IL}$	TXD 引脚			0.8	V
高电平输入电流	${ m I}_{ m IH}$	TXD 引脚			10	μΑ
低电平输入电流	${ m I}_{ m IL}$	TXD 引脚	-10			μΑ
高电平输出电压	V_{OH}	I _{OH} =-4mA,RXD 引脚	VDD1-0.4			V
低电平输出电压	V _{OL}	I _{OL} =4mA,RXD 引 脚			0.4	V
输入电容	$C_{ m IN}$	TXD 引脚		2		pF

过温保护

参数	符号	测试条件	最小	典型	最大	单位
过温关断	$T_{j(sd)}$			160		°C

供电电流

参数	符号	测试条件	最小	典型	最大	单位
Vccı 供电电流	I _{CC1}	$V_I = 0V$ 或 V_{CC1} , $V_{CC1} = 3.3V$		1.8	2.8	mA
V CC1 洪电电流		$V_{I}=0V$ 或 V_{CC1} , $V_{CC1}=5V$		2.3	3.6	mA
V _{CC2} 供电电流	$ m I_{CC2}$	V _I =0V, 负载=60Ω		50	70	mA
		V _I =VCC		6	10	mA

(如无另外说明,V_{CC1}=V_{CC2}=5V±10%,Temp=T_{MIN}~T_{MAX},典型值在 V_{CC1}=V_{CC2}=+5V,Temp=25℃。)

功能表

表 1 CAN 收发器真值表

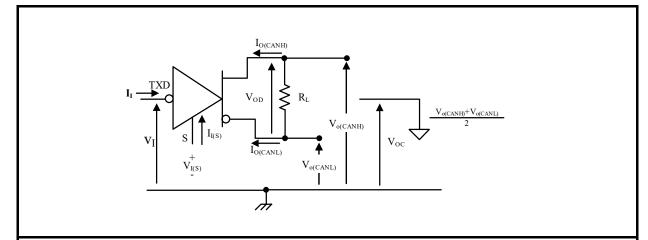
驱动器				接收器			
INPUTS	OUTPUTS		DUC CTATE	CANIL CANI	DVD	DUC CTATE	
TXD	CANH	CANL	BUS STATE	CANH- CANL	RXD	BUS STATE	
L	Н	L	显性	VID≥0.9V	L	显性	
Н	Z	Z	隐性	0.5V <vid<0.9v< td=""><td>?</td><td>?</td></vid<0.9v<>	?	?	
Open	Z	Z	隐性	VID≤0.5 V	Н	隐性	
X	Z	Z	隐性	Open	Н	隐性	

⁽¹⁾ H=高电平; L=低电平; X=不关心; ? 表示不确定。

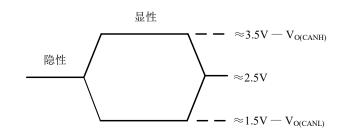
表 2 驱动器功能表

INPUTS	INPUTS OUTPUTS		
TXD (1)	CANH (1)	CANL (1)	Bus State
L	Н	L	显性
Н	Z	Z	隐性

(1) H=高电平; L=低电平; Z=高阻。


表 3 接收器功能表

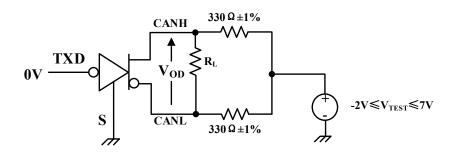
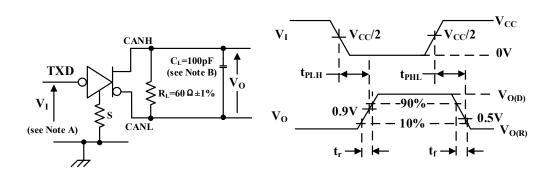
V _{ID} =CANH-CANL	V _{ID} =CANH-CANL	Bus State	Bus State
	V _{ID} ≥0.9V	显性	显性
Normal or Cilore	$0.5 < V_{ID} < 0.9V$?	?
Normal or Silent	$V_{ID} \leq 0.5 V$	隐性	隐性
	Open (VID≈0V)	OPEN (隐性)	隐性

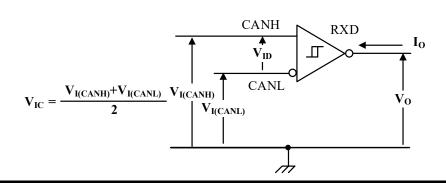

(1) H=高电平; L=低电平; ?=不确定。

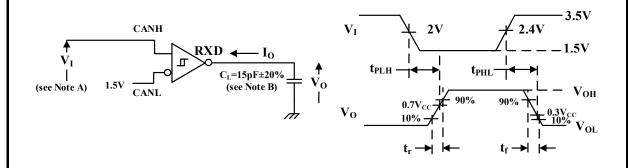
测试电路

图 1 驱动器电压、电流测试定义

图 2 总线逻辑电压定义

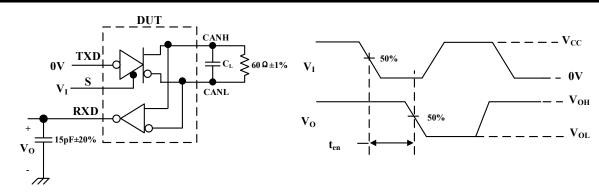




图 3 驱动器 VOD 测试电路



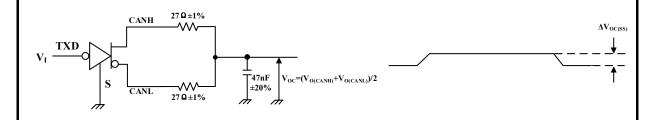
- A、输入脉冲产生器特点: PRR≤125 kHz, 50% 占空比, t_i≤6 ns, t_i≤6 ns, Zo=50 Ω;
- B、 CL 包括仪器与固定电容,误差在±20%以内。

图 4 驱动器测试电路与电压波形


图 5 接收器电压与电流定义

- A、输入脉冲产生器特点: PRR≤125kHz, 50%占空比, tr<6ns, tf<6ns, Zo=50Ω;
- B、 CL 包括仪器与固定电容,误差在±20%以内。

图 6 接收器测试电路与电压波形



注: CL=100pF 包括仪器与固定电容,误差在±20%以内;

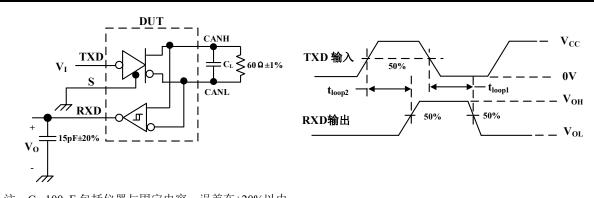
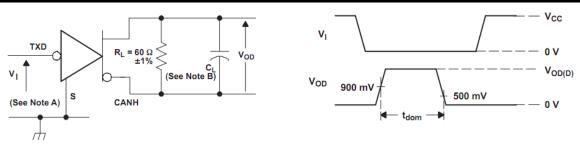

所有 V₁输入脉冲发生器的特点: 脉冲重复速率 PRR≤25kHZ, 50%占空比, t≤6ns, t≤6ns。

图 7 ten 测试电路与电压波形

注: V_I从 0~VCC,输入脉冲产生器特点: PRR≤125kHz,50%占空比,tr<6ns,tf<6ns,Zo=50Ω。


图 8 共模输出电压测试与波形

注: C_L=100pF 包括仪器与固定电容,误差在±20%以内。

图 9 t_(LOOP)测试电路与波形

具有隔离功能,1Mbps,高速 CAN 总线收发器

- **A、**输入脉冲产生器特点: t_r<6ns, t_f<6ns, Zo=50Ω;
- B、CL包括仪器与固定电容,误差在±20%以内。

图 10 显性超时测试电路与波形

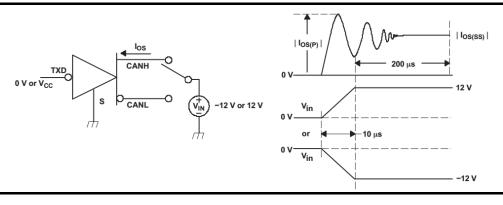
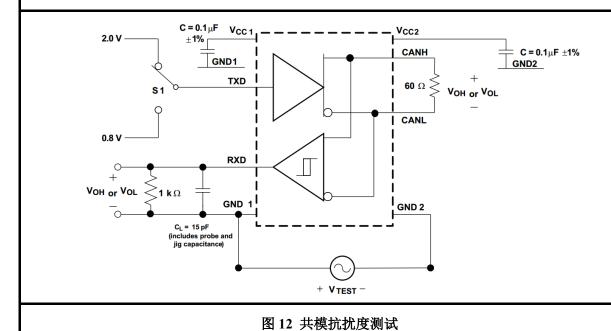



图 11 驱动器短路电流测试电路与波形

说明

1 简述

SIT1050ISO 是一款具有隔离功能的用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于车载、工业控制等领域,速率可达到 1Mbps,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力,完全兼容"ISO 11898"标准,提供宽体 SOPW16 封装,隔离耐压 $5000V_{RMS}$,提供宽体 DUB8 封装,隔离耐压 $2500V_{RMS}$,共模抗扰度达到 $100kV/\mu_{BS}$ 。

2 短路保护

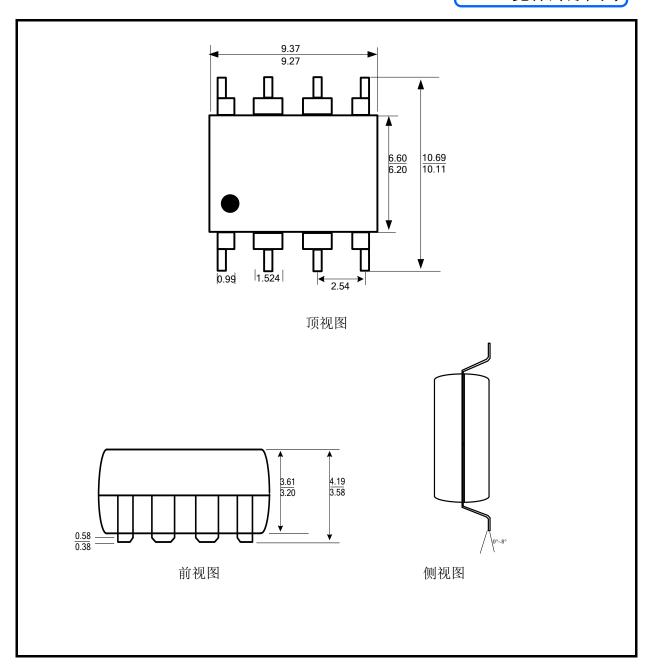
SIT1050ISO 的驱动级具有限流保护功能,以防止驱动电路短路到正和负的电源电压,发生短路时功耗会增加,短路保护功能可以保护驱动级不被损坏。

3 过温保护

SIT1050ISO 具有过温保护功能,过温保护触发后,驱动级的电流将减小,因为驱动管是主要的 耗能部件,电流减小可以降低功耗从而降低芯片温度。同时芯片的其它部分仍然保持正常工作。

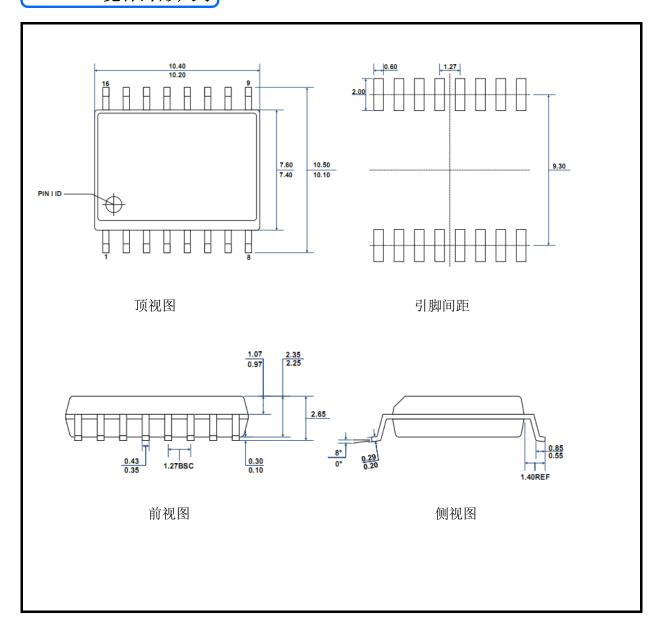
4 显性超时功能

如果引脚 TXD 因硬件和(或)软件应用故障而被强制为永久低电平,内置的 TXD 显性超时定时器电路可防止总线线路被驱动至永久显性状态(阻塞所有网络通信)。定时器由引脚 TXD 上的负沿触发。

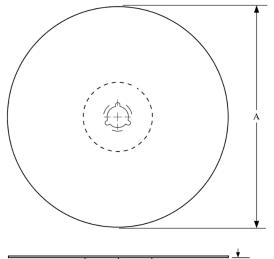

如果引脚 TXD 上的低电平持续时间超过内部定时器值(t_{dom}),发送器将被禁用,驱动总线进入 隐性状态。定时器通过引脚 TXD 上的正边沿复位。

5 工作模式

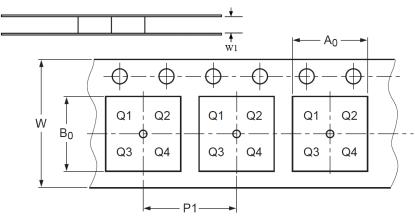
SIT1050ISO 工作在高速模式,这是默认的工作模式。



DUB8 宽体外形尺寸



SOPW16 宽体外形尺寸



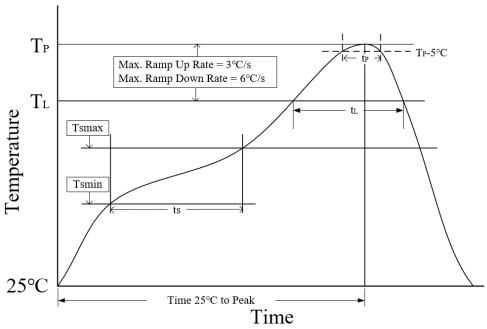
编带信息

A0	Dimension designed to accommodate the
	component width
В0	Dimension designed to accommodate the
ВО	component length
K0	Dimension designed to accommodate the
K0	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

Direction of Feed

封装类型	卷盘直径 A (mm)	编带宽度 W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
DUB8	330±2.0	$24.4^{+2.0}_{-0.0}$	11.00±0.10	9.60±0.10	4.40±0.10	16.00	24.00+0.3
SOPW16	330±2.0	$16.4^{+2.0}_{-0.0}$	10.75±0.10	10.70±0.10	2.80±0.10	12.00±0.10	16.00±0.20


定购信息

定购代码	封装	包装方式	
SIT1050ISODUB8	DUB8	编带包装	
SIT1050ISODW	SOPW16	编带包装	

DUB8 封装包装为 800 颗/盘, SOW16 封装包装为 1000 颗/盘。

回流焊

参数	无铅焊接条件
平均温升速率(T _L to T _P)	3 °C/second max
预热时间 ts(T _{smin} =150 ℃ to T _{smax} =200 ℃)	60-120 seconds
融锡时间 t _L (T _L =217 ℃)	60-150 seconds
峰值温度 Tp	260-265 °C
小于峰值温度 5 ℃以内时间 t _P	30 seconds
平均降温速率(T _P to T _L)	6 °C/second max
常温 25℃ 到峰值温度 TP 时间	8 minutes max

重要声明

芯力特有权在不事先通知的情况下,保留更改上述资料的权利。

修订历史

版本号	修订内容	修订时间
V1.0	初始版本。	2020.03
V1.1	更新功能表; 更新定购代码。	2021.04
V1.2	更新 I _{INI} ; 更新 I _{OSR} 。	2021.10
V1.3	增加 V _{IH} 、V _{IL} 、I _{OH} 、I _{OL} ; 增加 "逻辑侧直流特性"; 删除 SOPW8 封装信息; 增加编带信息; 更新订购信息; 增加包装方式; 增加回流焊信息; 增加 = 要说明"; 增加修订历史。	2022.12