

特点:

- ▶ 完全兼容"ISO 11898-12V"标准, 可应用于 12V 电源系统;
- ▶ Rs 脚斜率控制以降低 RFI;
- ▶ 内置过温保护;
- ▶ 过流保护功能;
- ▶ 低电流待机模式
- ▶ 未上电节点不干扰总线;
- ▶ 至少允许 110 个节点连接到总线;
- ▶ 高速 CAN, 传输速率可达到 1Mbps;
- ▶ 高抗电磁干扰能力;

产品外形:

提供绿色环保无铅封装

描述

SIT82C250 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于小汽车、工业控制等领域,速率可达到 1Mbps,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力。

参数	符号	测试条件	最小	最大	单位
供电电压	V_{cc}		4.5	5.5	V
供电电流	I_{cc}	待机模式		275	uA
最大传输速率	1/t _{bit}	非归零码	1		Mbaud
CANH、CANL 输入输出电压	V_{can}		-8	+18	V
总线差分电压	V_{diff}		1.5	3.0	V
环境温度	T_{amb}		-40	125	°C

引脚分布图

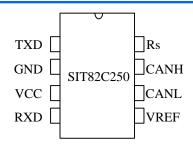


图 1 SIT82C250 引脚分布图

极限参数

参数	符号	大小	单位
电源电压	V_{CC}	-0.3~+7	V
MCU 侧端口	TXD,RXD,VREF,Rs	-0.3~VCC+0.3	V
总线侧输入电压	CANL, CANH	-8~18	V
6,7号引脚瞬态电压 见图7	V_{tr}	-200~+200	V
存储工作温度范围		-55~150	°C
环境温度		-40~125	°C
焊接温度范围		300	°C
连续功耗	SOP8	400	mW
上	DIP8	700	mW

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

引脚定义

引脚序号	引脚名称	引脚功能	
1	TXD	发送器数据输入端。	
2	GND	地	
3	VCC	供电电源	
4	RXD	接收器数据输出端	
5	VREF	参考电压输出	
6	CANL	低电位 CAN 电压输入输出端	
7	CANH	高电位 CAN 电压输入输出端	
8	Rs	斜率控制输入	

总线发送器直流特性

参数	符号	测试条件	最小	典型	最大	单位
高电平输入电压	V_{IH}	输出隐性	$0.7V_{\rm CC}$		V _{CC} +0.3	V
低电平输入电压	V_{IL}	输入隐性	-0.3		0.3 V _{CC}	V
高电平输入电流	V_{IH}	V ₁ =4V	-200		+30	uA
低电平输入电流	V_{IL}	$V_1=1V$	-100		-600	uA
隐性总线电压	V _{6,7}	V ₁ =4V,空载	2.0		3.0	V
Off-state 输出漏电流	T	$-2V < (V_6, V_7) < -7V$	-2		+2	mA
On-state 和古佛电机	I_{LO}	$-5V < (V_6, V_7) < 18V$	-10		+10	mA
CANH 输出电压	V	V ₁ =1V, VCC=4.75~5.5V	3.0		4.5	V
CANII 和山屯压	V_7	V ₁ =1V, VCC=4.75~5.5V	2.75		4.5	V
CANL 输出电压	V_6	$V_1=1V$	0.5		2.0	V
c nin = nin		$V_1=1V$	1.5		3.0	V
6 脚, 7 脚 差分输出电压	$\Delta V_{6,7}$	$V_1=1V,RL=45\Omega$	1.5			V
		V ₁ =4V,空载	-500		+50	mV
CANH 短路电流	I _{sc7}	V ₇ =-18V		-100	-200	mA
CANL 短路电流	I_{sc6}	V6=+18V			200	mA

(如无另外说明, V_{CC} =5V±10% , T_{MIN} - T_{MAX} ,典型值在 V_{CC} =+5V, T_{CC} =25°C)

总线接收器直流特性

参数	符号	测试条件	最小	典型	最大	单位
		NOTE1	-1		0.5	V
隐性差分输入电压	$V_{\text{diff}(r)}$	-7V< (V ₆ , V ₇) <12V; NOTE1	-1		0.4	V
			0.9		5.0	V
 显性差分输入电压	V	-7V<(V ₆ , V ₇)<12V, 非待机模式	1.0		5.0	V
业	$V_{\mathrm{diff}(d)}$	待机模式	0.97		5.0	V
		VCC=4.5~5.1V 待机模式	0.91		5.0	V
差分输入迟滞	$V_{\text{diff(hys)}}$	见图 4		150		mV

5V 供电, 1Mbps 高速 CAN 总线收发器

高电平输出电压	V _{OH} , Pin4	I ₄ =-100uA	$0.8V_{CC}$	V_{CC}	V
低电平输出电压	V Din 4	$I_4=1mA$	0	0.2 V _{CC}	V
1000 1 棚山屯区	V _{OL} , Pin4	I ₄ =10mA	0	1.5	V
CANH,CANL 输入阻抗	R_{i}		5	25	ΚΩ
差分输入阻抗	R _{diff}		20	100	ΚΩ

(如无另外说明, V_{CC} =5V±10% , $Temp=T_{MIN}\sim T_{MAX}$,典型值在 V_{CC} =+5V,Temp=25°C, V_1 =4V; Pin6 与 Pin7 由外部驱动,-2V<($V_{6,7}$)<7V)

NOTEI:包括高速、斜率控制与待机模式。

参考电压输出

参数	符号	测试条件	最小	典型	最大	单位
参考输出电压	17	V ₈ =1V; I ₅ <50uA	$0.45V_{CC}$		$0.55V_{\rm CC}$	V
少	V_{ref}	V ₈ =4V; I ₅ <5uA	$0.4V_{\rm CC}$		$0.6V_{\rm CC}$	V

(如无另外说明, V_{CC} =5V±10% , T_{MAX} , 典型值在 V_{CC} =+5V, T_{CC} =25°C)

动态特性参数

参数	符号	测试条件	最小	典型	最大	单位
最小 bit 时间	$t_{\rm bit}$	$R_8=0\Omega$			1	us
TXD 信号到 总线激活的延迟	$t_{\rm onTXD}$	$R_8=0\Omega$			50	ns
TXD 信号到 总线失活的延迟	$t_{ m offTXD}$	$R_8=0\Omega$		40	80	ns
TXD 信号到 接收器激活的延迟	$t_{\rm onRXD}$	$R_8=0\Omega$		55	120	ns
TXD 信号到		$R_8=0\Omega$		100	190	ns
接收器失活的延迟	$t_{ m offRXD}$	$R_8=47K\Omega$		300	400	ns
CANH、CANL 摆率	SR	$R_8=47K\Omega$		7		V/us
从待机模式到唤醒的 延迟(通过 pin8)	t _{wake}	见图 5			20	us
待机条件下,总线显 性到 RXD 输出低 的延迟	$t_{ m dRXDL}$	V ₈ =4V; 见图 6			3	us

(如无另外说明,RL= 60Ω ; CL=100pF; 见图 2,图 3)

(如无另外说明, V_{CC} =5V±10% , T_{MIN} ~ T_{MAX} ,典型值在 V_{CC} =+5V, T_{CC} =0.

待机与斜率控制(pin8)

参数	符号	测试条件	最小	典型	最大	单位
待机模式输入电压	V_{stb}		$0.75V_{CC}$			V
斜率控制模式电流	I_{slope}		-10		-200	uA
斜率控制模式电压	V_{slope}		$0.4V_{CC}$		0.6V _{CC}	V

(如无另外说明, V_{CC} =5V±10% , T_{MIN} ~ T_{MAX} ,典型值在 V_{CC} =+5V, T_{CC} =00% , T_{MIN} ~ T_{MAX}

供电电流

参数	符号	测试条件	最小	典型	最大	单位
		显性; V ₁ =1V; V _{CC} <5.1V			78	mA
		显性; V ₁ =1V; V _{CC} <5.25V			80	mA
电源电流	I_3	显性; V ₁ =1V; V _{CC} <5.5V			85	mA
		隐性; V ₁ =4V; R ₈ =47kΩ			10	mA
		待机模式; NOTE2			275	uA

(如无另外说明,VCC=5V±10% ,Temp=T_{MIN}~T_{MAX},典型值在 VCC=+5V,Temp=25℃)

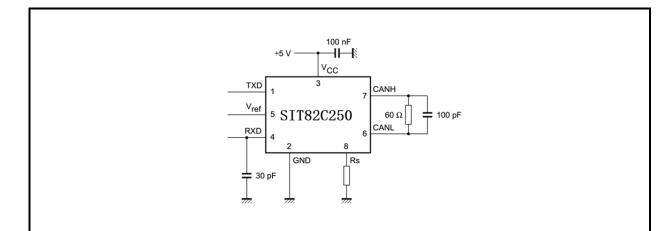
NOTE2: $I_1 = I_4 = I_5 = 0 \text{mA}; 0 \text{V} < \text{V}_6, \text{V}_7 < \text{V}_{CC}; \text{V}_8 = \text{V}_{CC}; \text{T}_{amb} < 90 ^{\circ}\text{C}$

功能表

表 1 CAN 收发器真值表

V _{CC}	TXD	CANH	CANL	BUS STATE	RXD
4.5~5.5V	0	Н	L	显性	0
4.5~5.5V	1(或浮空)	浮空	浮空	隐性	1 ⁽²⁾
4.5~5.5V	$\mathbf{X}^{(1)}$	浮空,如果 V _{RS} >0.75V _{CC}	浮空,如果 V _{RS} >0.75V _{CC}	浮空	1 ⁽²⁾
0 <v<sub>CC<4.5V</v<sub>	浮空	浮空	浮空	浮空	$\mathbf{X}^{(1)}$

^{(1):} 不关心


表 2 Rs 引脚摘要

加在 Rs 引脚的条件	模式	Rs 引脚的电流电压结果
$V_{Rs}>0.75V_{CC}$	待机	-I _{Rs} <10uA
10uA<-I _{Rs} <200uA	斜率控制	$0.4V_{CC} < V_{Rs} < 0.6V_{CC}$
V_{Rs} <0.3 V_{CC}	高速	-I _{Rs} <500uA

^{(2):} 如果总线上其它节点在传输显性位,则 RXD=0。

测试电路

图 2 动态特性测试电路

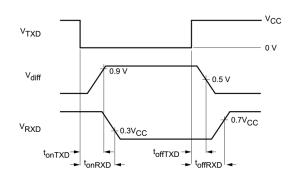


图 3 动态特性时序图

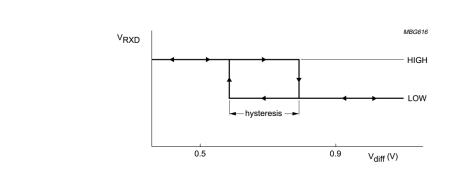
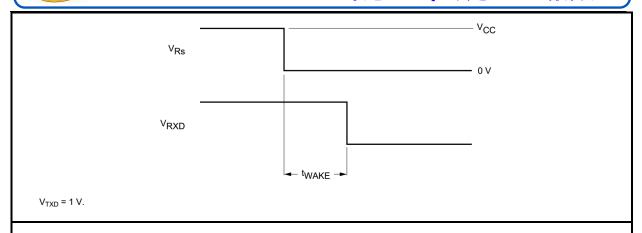
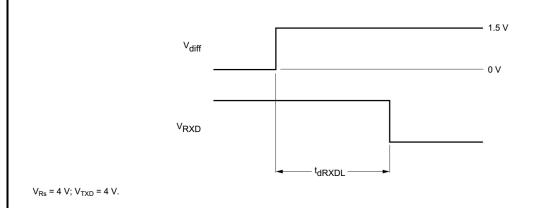




图 4 迟滞

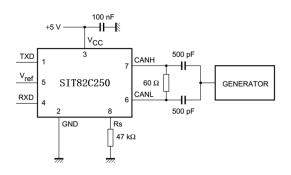
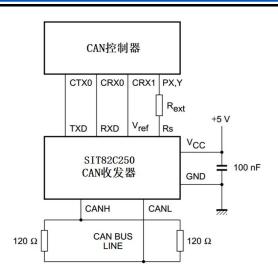


图 5 从待机状态唤醒时序图


图 6 总线显性到 RXD 输出低时序图

根据 ISO7637 part1,test pulses1,2,3a and 3b 施加波形

图 7 汽车应用瞬变测试电路

- (1) CAN 控制器的输出控制寄存器应编程为推挽操作,显性=Low。
- (2) 如果没有斜率控制需求, $R_{ext}=0$

图 8 典型的 CAN 收发器应用图

说明

1 简述

SIT82C250 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于小汽车、工业控制等领域,速率可达到 1Mbps,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力,完生兼容"ISO 11898-12V"标准。

2 短路保护

SIT82C250 的驱动级具有限流保护功能,以防止驱动电路短路到正和负的电源电压,发生短路时功耗会增加,短路保护功能可以保护驱动级不被损坏。

3 过温保护

SIT82C250 具有过温保护功能,当结温超过 160℃时,驱动级的电流将减小,因为驱动管是主要的耗能部件,电流减小可以降低功耗从而降低芯片温度。同时芯片的其它部分仍然保持正常工作。

4 电瞬态保护

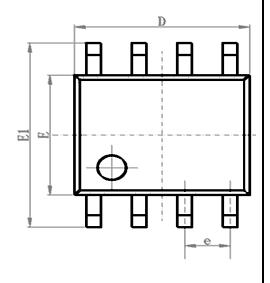
电瞬变常常发生在汽车应用环境中,SIT82C250的 CANH、CANL 具有防止电瞬变损坏的功能。

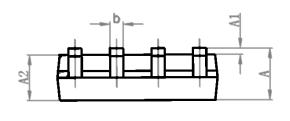
5 控制模式

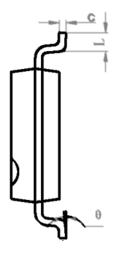
通过控制 pin8 (Rs 引脚)的状态,可以改变工作模式,有三种模式可选:高速模式、斜率控制模式和待机模式。

pin8 接地形成高速模式,这种模式下,没有采用任何措施去限制发送器的斜率,采用这种模式时,推荐带有屏蔽线的电缆以避免 RFI 问题。

pin8 通过电阻接地形成斜率控制模式,这种模式允许不采用带有屏蔽线的双绞线或者并行线作为总线,斜率与 pin8 的电流成正比,通过控制发送器的斜率可以减小 RFI。

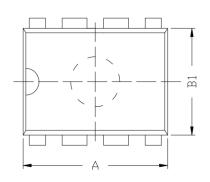

pin8 接高电平,芯片进入低功耗待机模式,这种模式下,发送器关闭同时接收器进入低电流状态。如果接收器检测到总线显性(总线差分电压>0.9V),RXD 切换为低电平,MCU 此时需要响应该动作,通过控制 pin8 进入正常的运行状态。因为待机状态下,电流很小,响应时间较长,在较高的波特率下第一个信号可能会丢失。

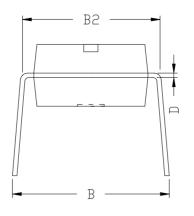


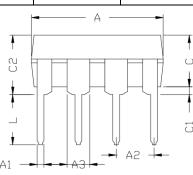

SOP8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	1.50	1.60	1.70
A1	0.1	0.15	0.2
A2	1.35	1.45	1.55
b	0.355	0.400	0.455
D	4.800	4.900	5.00
Е	3.780	3.880	3.980
E1	5.800	6.000	6.200
e		1.270BSC	
L	0.40	0.60	0.80
С	0.153	0.203	0.253
θ	-2°	-4°	-6°






DIP8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm	
A	9.00	9.20	9.40	
A1	0.33	0.45	0.51	
A2	2.54TYP			
A3	1.525TYP			
В	8.40	8.70	9.10	
B1	6.20	6.40	6.60	
B2	7.32	7.62	7.92	
С	3.20	3.40	3.60	
C1	0.50	0.60	0.80	
C2	3.71	4.00	4.31	
D	0.20	0.28	0.36	
L	3.00	3.30	3.60	

定购信息

定购代码	温度	封装
SIT82C250T	-40°C~125°C	8 SO
SIT82C250	-40°C~125°C	DIP8

编带式包装为 2500 颗/盘