

2315N-VB Datasheet

P-Channel 30 V (D-S) MOSFET

PRODUC	PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$ Typ.	I _D (A) ^a	Q _g (Typ.)				
	0.046 at V _{GS} = - 10 V	- 5.6					
- 30	0.049 at V _{GS} = - 6 V	- 5	11.4 nC				
	0.054 at V _{GS} = - 4.5 V	-4.5					

P-Channel MOSFET

FEATURES

- TrenchFET® Power MOSFET
- 100 % R_g Tested

APPLICATIONS

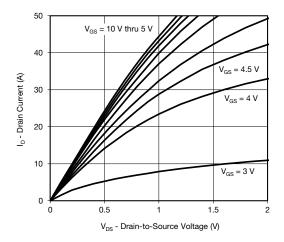
- For Mobile Computing
 - Load Switch
 - Notebook Adaptor Switch
 - DC/DC Converter

ABSOLUTE MAXIMUM RATIN	IGS (T _A = 25 °C	, unless othe	rwise noted)	
Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	- 30	V
Gate-Source Voltage		V_{GS}	± 20	V
	T _C = 25 °C		- 5.6	
Continuous Drain Current /T 150 °C)	T _C = 70 °C	1 , [- 5.1	
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	l _D	- 5.4 ^{b,c}	1
	T _A = 70 °C	1	- 4.3 ^{b,c}	А
Pulsed Drain Current (t = 100 μs)		I _{DM}	- 18	
Continous Source-Drain Diode Current	T _C = 25 °C		- 2.1	1
	T _A = 25 °C	- I _S	- 1 ^{b,c}	1
	T _C = 25 °C		2.5	
Maximum Power Dissipation	T _C = 70 °C]	1.6	w
	T _A = 25 °C	- P _D -	1.25 ^{b,c}	1 vv
	T _A = 70 °C	1	0.8 ^{b,c}	1
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C

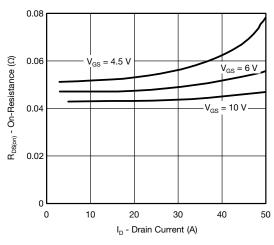
THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^{b,d}	t ≤ 5 s	R _{thJA}	75	100	°C/W
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	40	50	C/VV

Notes:

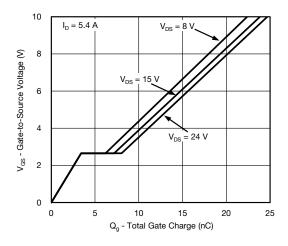
- a. Based on $T_C = 25$ °C.
- b. Surface mounted on 1" x 1" FR4 board.
- c. t = 5 s.
- d. Maximum under steady state conditions is 166 °C/W.

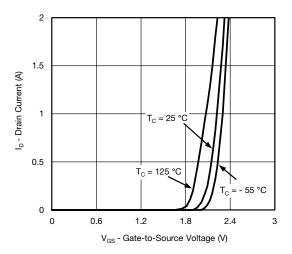

Parameter Syminarian Static VDrain-Source Breakdown Voltage VDS VDS Temperature Coefficient △VDS VGS(th) Temperature Coefficient △VGS(th) Gate-Source Threshold Voltage VGS(th) Gate-Source Leakage IGS Zero Gate Voltage Drain Current IDS On-State Drain Currentare ID(or Drain-Source On-State Resistancear RDS(r Forward Transconductancear 9ts Dynamicb Input Capacitance Input Capacitance Cos Reverse Transfer Capacitance Crs Total Gate Charge Qg Gate-Source Charge Qg Gate Resistance Rg Turn-On Delay Time td(or Rise Time tr Turn-Off Delay Time td(or Fall Time tf Turn-On Delay Time td(or	S	Test Conditions $V_{GS} = 0 \text{ V, } I_D = -250 \text{ μA}$ $I_D = -250 \text{ μA}$ $V_{DS} = V_{GS}, I_D = -250 \text{ μA}$ $V_{DS} = 0 \text{ V, } V_{GS} = \pm 20 \text{ V}$ $V_{DS} = -30 \text{ V, } V_{GS} = 0 \text{ V}$ $V_{DS} = -30 \text{ V, } V_{GS} = 0 \text{ V}$ $V_{DS} = -30 \text{ V, } V_{GS} = -10 \text{ V}$ $V_{GS} = -10 \text{ V, } I_D = -4.4 \text{ A}$ $V_{GS} = -6 \text{ V, } I_D = -4.4 \text{ A}$ $V_{GS} = -6 \text{ V, } I_D = -3.6 \text{ A}$ $V_{DS} = -15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ $V_{DS} = -15 \text{ V, } V_{GS} = -10 \text{ V, } I_D = -5.4 \text{ A}$ $V_{DS} = -15 \text{ V, } V_{GS} = -10 \text{ V, } I_D = -5.4 \text{ A}$ $V_{DS} = -15 \text{ V, } V_{GS} = -4.5 \text{ V, } I_D = -5.4 \text{ A}$	- 30 - 0.5	7yp. - 19 4 0.046 0.049 0.054 18 1295 150 130 24 11.4 3.4	- 2.0 ± 100 - 1 - 5 36 17	V mV/°C V nA A A A PF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S/T_J	$\begin{split} I_D = & - 250 \ \mu A \\ V_{DS} = & V_{GS} \ , I_D = - 250 \ \mu A \\ V_{DS} = & 0 \ V, V_{GS} = \pm 20 \ V \\ V_{DS} = & - 30 \ V, V_{GS} = 0 \ V \\ V_{DS} = & - 30 \ V, V_{GS} = 0 \ V, T_J = 55 \ ^{\circ}C \\ V_{DS} \leq & - 5 \ V, V_{GS} = - 10 \ V \\ V_{GS} = & - 10 \ V, I_D = - 4.4 \ A \\ V_{GS} = & - 6 \ V, I_D = - 4.4 \ A \\ V_{GS} = & - 6 \ V, I_D = - 3.6 \ A \\ V_{DS} = & - 15 \ V, I_D = - 3.4 \ A \\ \end{split}$	- 0.5	0.046 0.049 0.054 18 1295 150 130 24 11.4	±100 -1 -5	mV/°C V nA μA A S
$\begin{array}{c} V_{DS} \ \text{Temperature Coefficient} & \Delta V_{DS} \\ V_{GS(th)} \ \text{Temperature Coefficient} & \Delta V_{GS(th)} \\ V_{GS(th)} \ \text{Temperature Coefficient} & \Delta V_{GS(th)} \\ Gate-Source Threshold Voltage & V_{GS(th)} \\ Gate-Source Leakage & I_{GS} \\ Zero \ \text{Gate Voltage Drain Current} & I_{DS(th)} \\ Zero \ \text{Gate Voltage Drain Current} & I_{D(th)} \\ On-State \ \text{Drain Current}^a & I_{D(th)} \\ Drain-Source \ \text{On-State Resistance}^a & R_{DS(th)} \\ \hline \text{Drain-Source On-State Resistance}^a & g_{fs} \\ \hline $	S/T_J	$\begin{split} I_D = & - 250 \ \mu A \\ V_{DS} = & V_{GS} \ , I_D = - 250 \ \mu A \\ V_{DS} = & 0 \ V, V_{GS} = \pm 20 \ V \\ V_{DS} = & - 30 \ V, V_{GS} = 0 \ V \\ V_{DS} = & - 30 \ V, V_{GS} = 0 \ V, T_J = 55 \ ^{\circ}C \\ V_{DS} \leq & - 5 \ V, V_{GS} = - 10 \ V \\ V_{GS} = & - 10 \ V, I_D = - 4.4 \ A \\ V_{GS} = & - 6 \ V, I_D = - 4.4 \ A \\ V_{GS} = & - 6 \ V, I_D = - 3.6 \ A \\ V_{DS} = & - 15 \ V, I_D = - 3.4 \ A \\ \end{split}$	- 0.5	0.046 0.049 0.054 18 1295 150 130 24 11.4	±100 -1 -5	mV/°C V nA μA A S
V _{GS(th)} Temperature Coefficient ΔV _{GS(th)} Gate-Source Threshold Voltage V _{GS(th)} Gate-Source Leakage I _{GS} Zero Gate Voltage Drain Current I _{DS} On-State Drain Current ^a I _{D(o)} Drain-Source On-State Resistance ^a R _{DS(th)} Forward Transconductance ^a gfs Dynamic ^b Diput Capacitance C _{is} Output Capacitance C _{os} Reverse Transfer Capacitance C _{rs} Total Gate Charge Q _g Gate-Source Charge Q _g Gate Resistance R _g Turn-On Delay Time t _{d(o)} Rise Time t _r Turn-Off Delay Time t _{d(o)} Fall Time t _f Turn-On Delay Time t _{d(o)}	hh/TJ tth) SS S The state of	$\begin{split} V_{DS} &= V_{GS} , I_D = -250 \mu\text{A} \\ V_{DS} &= 0 \text{V}, V_{GS} = \pm 20 \text{V} \\ V_{DS} &= -30 \text{V}, V_{GS} = 0 \text{V} \\ V_{DS} &= -30 \text{V}, V_{GS} = 0 \text{V}, T_J = 55 ^{\circ}\text{C} \\ V_{DS} &\leq -5 \text{V}, V_{GS} = -10 \text{V} \\ V_{GS} &= -10 \text{V}, I_D = -4.4 \text{A} \\ V_{GS} &= -6 \text{V}, I_D = -4.4 \text{A} \\ V_{GS} &= -6 \text{V}, I_D = -3.6 \text{A} \\ V_{DS} &= -15 \text{V}, I_D = -3.4 \text{A} \\ \end{split}$		0.046 0.049 0.054 18 1295 150 130 24 11.4	±100 -1 -5	V nA μA A Ω S
Gate-Source Threshold Voltage V _{GS(} Gate-Source Leakage I _{GS} Zero Gate Voltage Drain Current I _{DS} On-State Drain Currenta I _{D(o)} Drain-Source On-State Resistancea R _{DS()} Forward Transconductancea g _{fs} Dynamicb C Input Capacitance C _{os} Reverse Transfer Capacitance C _{rs} Total Gate Charge Q _g Gate-Source Charge Q _g Gate Resistance R _g Turn-On Delay Time t _d (or Rise Time t _f Turn-Off Delay Time t _d (or Fall Time t _f Turn-On Delay Time t _d (or	tth) S S S In) On) S S S S S S S S S S S S S S S S S S S	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ $V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$ $V_{DS} \le -5 \text{ V}, V_{GS} = -10 \text{ V}$ $V_{GS} = -10 \text{ V}, I_{D} = -4.4 \text{ A}$ $V_{GS} = -6 \text{ V}, I_{D} = -4.4 \text{ A}$ $V_{GS} = -6 \text{ V}, I_{D} = -3.6 \text{ A}$ $V_{DS} = -15 \text{ V}, I_{D} = -3.4 \text{ A}$ $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -5.4 \text{ A}$		0.046 0.049 0.054 18 1295 150 130 24 11.4	±100 -1 -5	nA μA A Ω S
Gate-Source Leakage Zero Gate Voltage Drain Current On-State Drain Current Drain-Source On-State Resistance Forward Transconductance Dynamicb Input Capacitance Output Capacitance Reverse Transfer Capacitance Coss Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Fall Time Turn-On Delay Time	S S S S S S S S S S S S S S S S S S S	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ $V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$ $V_{DS} \le -5 \text{ V}, V_{GS} = -10 \text{ V}$ $V_{GS} = -10 \text{ V}, I_{D} = -4.4 \text{ A}$ $V_{GS} = -6 \text{ V}, I_{D} = -4.4 \text{ A}$ $V_{GS} = -6 \text{ V}, I_{D} = -3.6 \text{ A}$ $V_{DS} = -15 \text{ V}, I_{D} = -3.4 \text{ A}$ $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -5.4 \text{ A}$		0.049 0.054 18 1295 150 130 24 11.4	±100 -1 -5	nA μA A Ω S
Zero Gate Voltage Drain Current On-State Drain Current ^a Drain-Source On-State Resistance ^a Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Fall Time Turn-On Delay Time	S - n) - n - n - n - n - n - n - n - n -	$\begin{split} &V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V} \\ &V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C} \\ &V_{DS} \leq 5 \text{ V}, V_{GS} = 10 \text{ V} \\ &V_{GS} = 10 \text{ V}, I_{D} = 4.4 \text{ A} \\ &V_{GS} = 6 \text{ V}, I_{D} = 4.4 \text{ A} \\ &V_{GS} = 4.5 \text{ V}, I_{D} = 3.6 \text{ A} \\ &V_{DS} = 15 \text{ V}, I_{D} = 3.4 \text{ A} \\ \end{split}$	- 2.5	0.049 0.054 18 1295 150 130 24 11.4	-1 -5	μA A Ω S PF
On-State Drain Current ^a On-State Drain Current ^a Drain-Source On-State Resistance ^a Forward Transconductance ^a 9fs Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Cos Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Turn-Off Delay Time Tall Time Turn-On Delay Time	n) on) sssssssssssssssssssssssssssssssss	$\begin{split} V_{DS} &= 30 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55 \text{ °C} \\ V_{DS} &\leq 5 \text{ V}, V_{GS} = 10 \text{ V} \\ V_{GS} &= 10 \text{ V}, I_D = 4.4 \text{ A} \\ V_{GS} &= 6 \text{ V}, I_D = 4.4 \text{ A} \\ V_{GS} &= 6 \text{ V}, I_D = 3.6 \text{ A} \\ V_{DS} &= 15 \text{ V}, I_D = 3.4 \text{ A} \end{split}$ $V_{DS} &= 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} &= 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A} \end{split}$	- 2.5	0.049 0.054 18 1295 150 130 24 11.4	-5	A Ω S
Drain-Source On-State Resistance ^a R _{DS(i} Forward Transconductance ^a 9fs Dynamic ^b Input Capacitance C _{is} Output Capacitance Reverse Transfer Capacitance C _{rs} Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance R _g Turn-On Delay Time Turn-Off Delay Time t _d (on Fall Time Turn-On Delay Time t _d (on	s s s	$V_{DS} \le -5 \text{ V}, V_{GS} = -10 \text{ V}$ $V_{GS} = -10 \text{ V}, I_D = -4.4 \text{ A}$ $V_{GS} = -6 \text{ V}, I_D = -4 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}$ $V_{DS} = -15 \text{ V}, I_D = -3.4 \text{ A}$ $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -5.4 \text{ A}$	- 2.5	0.049 0.054 18 1295 150 130 24 11.4	36	Ω S pF
Drain-Source On-State Resistance ^a R _{DS(i} Forward Transconductance ^a 9fs Dynamic ^b Input Capacitance Output Capacitance C _{os} Reverse Transfer Capacitance C _{rs} Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance R _g Turn-On Delay Time t _{d(or} Fall Time Turn-On Delay Time t _{d(or} t _{d(or} Total Time Turn-On Delay Time t _{d(or} Turn-On Delay Time t _{d(or} Turn-On Delay Time t _{d(or}	s s s	$V_{GS} = -10 \text{ V}, I_D = -4.4 \text{ A}$ $V_{GS} = -6 \text{ V}, I_D = -4 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}$ $V_{DS} = -15 \text{ V}, I_D = -3.4 \text{ A}$ $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -5.4 \text{ A}$	- 2.3	0.049 0.054 18 1295 150 130 24 11.4		Ω S
Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Cos Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Turn-Off Delay Time Turn-On Delay Time	s s s	$V_{GS} = -6 \text{ V}, I_D = -4 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}$ $V_{DS} = -15 \text{ V}, I_D = -3.4 \text{ A}$ $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -5.4 \text{ A}$		0.049 0.054 18 1295 150 130 24 11.4		S pF
Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Cos Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Turn-Off Delay Time Turn-On Delay Time Turn-On Delay Time Turn-On Delay Time total Gate Charge Turn-Off Delay Time Turn-Off Delay Time Turn-On Delay Time	s s s	$V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}$ $V_{DS} = -15 \text{ V}, I_D = -3.4 \text{ A}$ $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -5.4 \text{ A}$		0.054 18 1295 150 130 24 11.4		S pF
Dynamic ^b Input Capacitance C _{is} Output Capacitance C _{os} Reverse Transfer Capacitance C _{rs} Total Gate Charge Q _g Gate-Source Charge Q _g Gate-Drain Charge Q _g Gate Resistance R _g Turn-On Delay Time t _d (or Rise Time t _r Turn-Off Delay Time t _d (or Fall Time t _f Turn-On Delay Time t _d (or	s s	$V_{DS} = -15 \text{ V}, I_{D} = -3.4 \text{ A}$ $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -5.4 \text{ A}$		18 1295 150 130 24 11.4		pF
Dynamic ^b Input Capacitance C _{is} Output Capacitance C _{os} Reverse Transfer Capacitance C _{rs} Total Gate Charge Q _g Gate-Source Charge Q _g Gate-Drain Charge Q _g Gate Resistance R _g Turn-On Delay Time t _d (or Rise Time t _r Turn-Off Delay Time t _d (or Fall Time t _f Turn-On Delay Time t _d (or Turn-On Delay Time t _f	s s	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -5.4 \text{ A}$		1295 150 130 24 11.4		pF
$\begin{array}{c} \text{Input Capacitance} & C_{\text{is}} \\ \text{Output Capacitance} & C_{\text{os}} \\ \text{Reverse Transfer Capacitance} & C_{\text{rs}} \\ \text{Reverse Transfer Capacitance} & C_{\text{rs}} \\ \text{Total Gate Charge} & Q_{\text{g}} \\ \text{Gate-Source Charge} & Q_{\text{gr}} \\ \text{Gate-Drain Charge} & Q_{\text{gr}} \\ \text{Gate Resistance} & R_{\text{g}} \\ \text{Turn-On Delay Time} & t_{\text{d(oi)}} \\ \text{Rise Time} & t_{\text{r}} \\ \text{Turn-Off Delay Time} & t_{\text{d(oi)}} \\ \text{Fall Time} & t_{\text{f}} \\ \text{Turn-On Delay Time} & t_{\text{d(oi)}} \\ \end{array}$	s s	V _{DS} = - 15 V, V _{GS} = - 10 V, I _D = - 5.4 A		150 130 24 11.4		-
$\begin{array}{c} \text{Output Capacitance} & & & & & & & & & & $	s s	V _{DS} = - 15 V, V _{GS} = - 10 V, I _D = - 5.4 A		150 130 24 11.4		- -
$ \begin{array}{c} \text{Reverse Transfer Capacitance} & C_{rs} \\ \hline \text{Total Gate Charge} & Q_g \\ \hline \text{Gate-Source Charge} & Q_{gs} \\ \hline \text{Gate-Drain Charge} & Q_g \\ \hline \text{Gate Resistance} & R_g \\ \hline \text{Turn-On Delay Time} & t_{d(o)} \\ \hline \text{Rise Time} & t_r \\ \hline \text{Turn-Off Delay Time} & t_{d(o)} \\ \hline \text{Fall Time} & t_f \\ \hline \text{Turn-On Delay Time} & t_{d(o)} \\ \hline \end{array} $	s s	V _{DS} = - 15 V, V _{GS} = - 10 V, I _D = - 5.4 A		130 24 11.4		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	s			24 11.4		
$\begin{array}{c} \text{Gate-Source Charge} & Q_{gi} \\ \text{Gate-Drain Charge} & Q_{gi} \\ \text{Gate Resistance} & R_{g} \\ \text{Turn-On Delay Time} & t_{d(oi)} \\ \text{Rise Time} & t_{r} \\ \text{Turn-Off Delay Time} & t_{d(oi)} \\ \text{Fall Time} & t_{f} \\ \text{Turn-On Delay Time} & t_{d(oi)} \\ \end{array}$	s d			11.4		
$\begin{array}{c} \text{Gate-Source Charge} & Q_{gi} \\ \text{Gate-Drain Charge} & Q_{gi} \\ \text{Gate Resistance} & R_{g} \\ \text{Turn-On Delay Time} & t_{d(oi)} \\ \text{Rise Time} & t_{r} \\ \text{Turn-Off Delay Time} & t_{d(oi)} \\ \text{Fall Time} & t_{f} \\ \text{Turn-On Delay Time} & t_{d(oi)} \\ \end{array}$	s d	V _{DS} = - 15 V, V _{GS} = - 4.5 V, I _D = - 5.4 A			17	~~
$\begin{array}{c} \text{Gate-Drain Charge} & \text{Q_{gt}} \\ \text{Gate Resistance} & \text{R_g} \\ \text{Turn-On Delay Time} & \text{$t_{d(o)}$} \\ \text{Rise Time} & \text{t_r} \\ \text{Turn-Off Delay Time} & \text{$t_{d(o)}$} \\ \text{Fall Time} & \text{t_f} \\ \text{Turn-On Delay Time} & \text{$t_{d(o)}$} \\ \end{array}$	d	$V_{DS} = -15 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -5.4 \text{ A}$		3.4		nC
$ \begin{array}{ccc} \text{Gate Resistance} & & R_g \\ \hline \text{Turn-On Delay Time} & & t_{d(o)} \\ \hline \text{Rise Time} & & t_r \\ \hline \text{Turn-Off Delay Time} & & t_{d(o)} \\ \hline \text{Fall Time} & & t_f \\ \hline \text{Turn-On Delay Time} & & t_{d(o)} \\ \hline \end{array} $				0	<u> </u>	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				3.8		
$ \begin{array}{ccc} \text{Rise Time} & & & t_r \\ \text{Turn-Off Delay Time} & & & t_{d(ol)} \\ \text{Fall Time} & & & t_f \\ \text{Turn-On Delay Time} & & & t_{d(ol)} \\ \end{array} $		f = 1 MHz	1.5	7.7	15.4	Ω
	1)			13	20	
$ \begin{array}{ccc} & & & & \\ \text{Fall Time} & & & & \\ \text{Turn-On Delay Time} & & & & \\ & & & & \\ & & & & \\ \end{array} $		V_{DD} = - 15 V, R_L = 3.5 Ω		4	8	
Turn-On Delay Time t _{d(or}	f)	$I_D\cong$ - 4.3 A, V_{GEN} = - 10 V, R_g = 1 Ω		38	57	
,				6	12	
	n)			28	42	ns
Rise Time t _r	.,	$V_{DD} = -15 \text{ V, R}_{L} = 3.5 \Omega$		16	24	-
Turn-Off Delay Time t _{d(of}	f)	$I_D \cong -4.3 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_q = 1 \Omega$		30	45	
Fall Time t _f	.,	, i		10	20	
Drain-Source Body Diode Characteristics						
Continuous Source-Drain Diode Current I _S		T _C = 25 °C			- 2.1	
Pulse Diode Forward Current (t = 100 μs)		-			- 80	A
Body Diode Voltage V _{SI}		I _S = - 4.3 A, V _{GS} = 0 V		- 0.8	- 1.2	V
Body Diode Reverse Recovery Time t _{rr}		5 / 55		15	23	ns
Body Diode Reverse Recovery Charge Q _{ri}				7	14	nC
		$I_F = -4.3 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$		8	17	110
$ \begin{array}{lll} \mbox{Reverse Recovery Fall Time} & t_a \\ \mbox{Reverse Recovery Rise Time} & t_b \end{array} $				0	1	ns

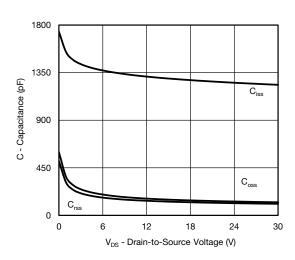
Notes:

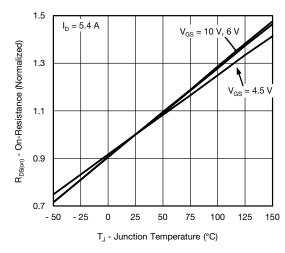

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

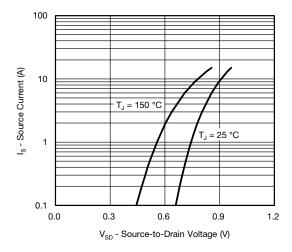



Output Characteristics

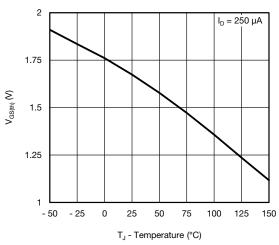

On-Resistance vs. Drain Current


Gate Charge

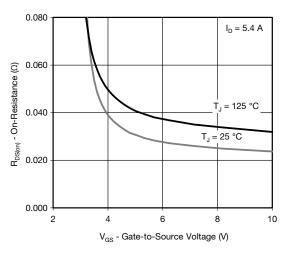
Transfer Characteristics

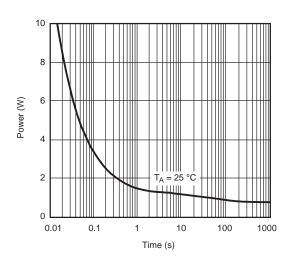


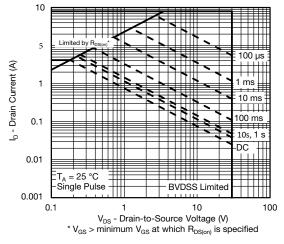
Capacitance



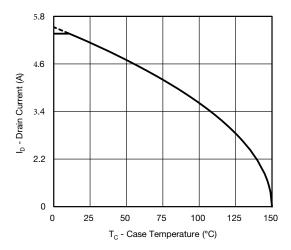
On-Resistance vs. Junction Temperature



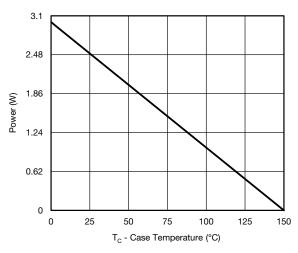

Source-Drain Diode Forward Voltage

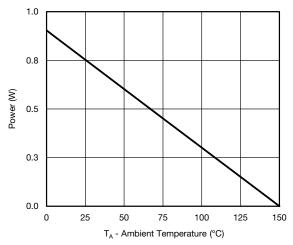

Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage

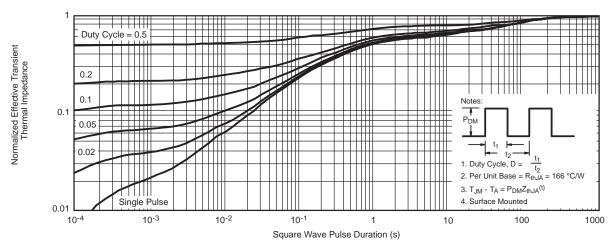


Single Pulse Power (Junction-to-Ambient)

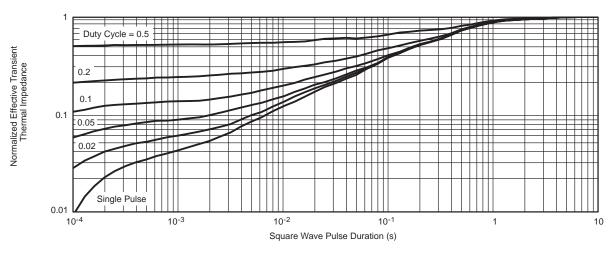



Safe Operating Area, Junction-to-Ambient

Current Derating*

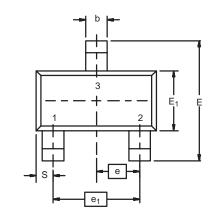


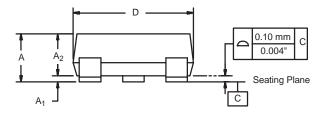
Power, Junction-to-Foot

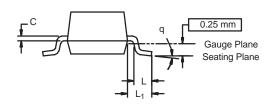

Power, Junction-to-Ambient

^{*} The power dissipation P_D is based on $T_{J(max.)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

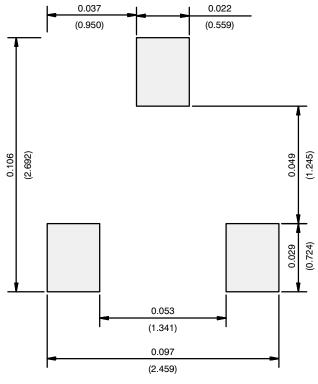
Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Foot


服务热线:400-655-8788


6

SOT-23 (TO-236): 3-LEAD



Dim	MILLIM	IETERS	INCHES		
	Min	Max	Min	Max	
Α	0.89	1.12	0.035	0.044	
A ₁	0.01	0.10	0.0004	0.004	
A ₂	0.88	1.02	0.0346	0.040	
b	0.35	0.50	0.014	0.020	
С	0.085	0.18	0.003	0.007	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E ₁	1.20	1.40	0.047	0.055	
е	0.95 BSC		0.0374 Ref		
e ₁	1.90 BSC		0.0748 Ref		
L	0.40	0.60	0.016	0.024	
L ₁	0.64	0.64 Ref		0.025 Ref	
S	0.50	0.50 Ref) Ref	
q	3°	8°	3°	8°	

DWG: 5479

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.