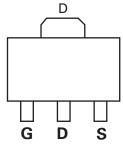


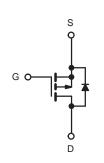
XP202A0003PR-VB Datasheet

P-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY								
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^d	Q _g (Typ.)					
- 30	0.050 at V _{GS} = - 10 V	- 7.6	13 nC					
- 30	0.056 at V_{GS} = - 4.5 V	- 6.0	13110					

FEATURES


- Halogen-free According to IEC 61249-2-21
 Definition
- TrenchFET[®] Power MOSFET
- 100 % R_g Tested


APPLICATIONS

- Load Switch
- Battery Switch

HALOGEN

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS T_A	= 25 °C, unless othe	erwise noted		
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	- 30	V	
Gate-Source Voltage	V _{GS}	± 20	v	
	T _C = 25 °C		- 7.6	
Continuous Drain Current (T ₁ = 150 °C)	T _C = 70 °C		- 5.8	
Continuous Diam Current $(T_j = 150^{\circ} C)$	T _A = 25 °C	I _D	- 6.0 ^{a, b}	
	T _A = 70 °C		- 5.2 ^{a, b}	A
Pulsed Drain Current	I _{DM}	- 35		
Continuous Source-Drain Diode Current	T _C = 25 °C	1	- 3.5	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	- 2.1 ^{a, b}	
	T _C = 25 °C		6.5	
Mauiaum Davies Disaination	T _C = 70 °C		3.5	10/
Maximum Power Dissipation	T _A = 25 °C	P _D	2.5 ^{a, b}	
	T _A = 70 °C	1 -	1.6 ^{a, b}	
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to 150	°C	

THERMAL RESISTANCE RATINGS								
Parameter	Symbol	Typical	Maximum	Unit				
Maximum Junction-to-Ambient ^{a, c}	t ≤ 10 s	R _{thJA}	40	50	°C/W			
Maximum Junction-to-Foot	Steady State	R _{thJF}	24	30				

Notes:

b. t = 10 s.

c. Maximum under Steady State conditions is 95 °C/W.

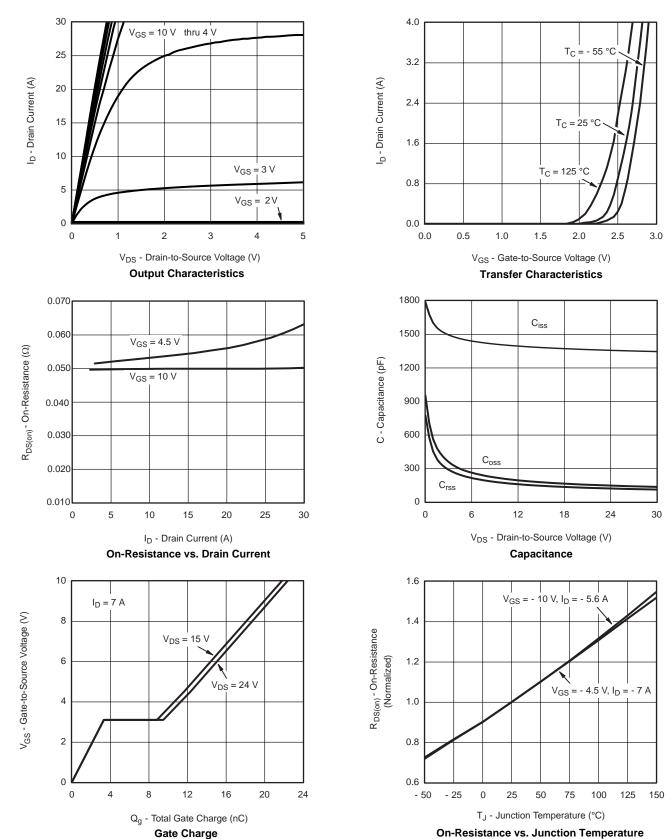
d. Package limited.

a. Surface mounted on 1" x 1" FR4 board.

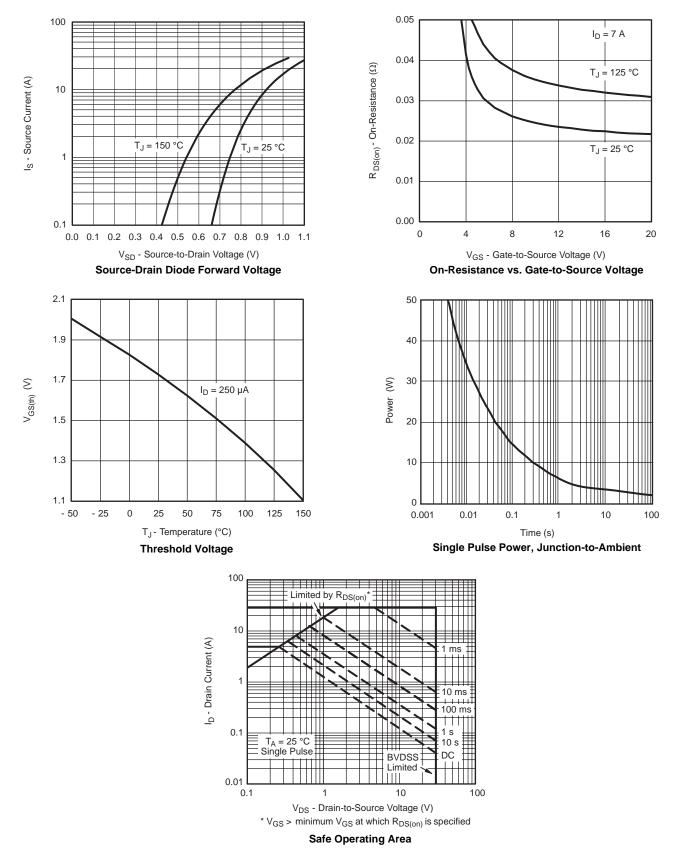
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPECIFICATIONS $T_J = 25 \text{ °C}$, unless otherwise noted							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static	-						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0 V, I _D = - 250 μA	- 30			V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	L _ 250 uA		- 31			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	i _D = - 250 μA		4.5		mv/°C	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	- 1.0		- 2.5	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}				± 100	nA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zoro Coto Voltogo Droin Current	L	$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			- 1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zero Gale vollage Drain Current	DSS	V _{DS} = - 30 V, V _{GS} = 0 V, T _J = 55 °C			- 5	μΑ	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le$ - 5 V, V_{GS} = - 10 V	- 20			А	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain Course On State Desister and	Real	V _{GS} = - 10 V, I _D = - 7.0 A		0.050		0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance	NDS(on)	V _{GS} = - 4.5 V, I _D = - 5.6 A		0.056		<u> </u>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 7.0 A		18		S	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance				1355			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	V _{DS} = - 15 V, V _{GS} = 0 V, f = 1 MHz		180		pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}	Test Conditions $V_{GS} = 0 \ V, \ I_D = -250 \ \mu A$ $I_D = -250 \ \mu A$ $V_{DS} = V_{GS}, \ I_D = -250 \ \mu A$ $V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V$ $V_{DS} = 0 \ V, \ V_{GS} = 0 \ V$ $V_{DS} = -30 \ V, \ V_{GS} = 0 \ V$ $V_{DS} = -30 \ V, \ V_{GS} = 0 \ V$ $V_{DS} = -30 \ V, \ V_{GS} = 0 \ V, \ T_J = 55 \ ^{\circ}C$ $V_{DS} = -30 \ V, \ V_{GS} = -10 \ V$ $V_{DS} = -10 \ V, \ I_D = -7.0 \ A$ $V_{GS} = -15 \ V, \ V_{GS} = 0 \ V, \ I_D = -7.0 \ A$ $V_{DS} = -15 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz$ $V_{DS} = -15 \ V, \ V_{GS} = -10 \ V, \ I_D = -7.0 \ A$ $V_{DS} = -15 \ V, \ V_{GS} = -10 \ V, \ I_D = -7.0 \ A$ $V_{DS} = -15 \ V, \ V_{GS} = -10 \ V, \ I_D = -7.0 \ A$ $V_{DS} = -15 \ V, \ V_{GS} = -10 \ V, \ I_D = -7.0 \ A$ $V_{DS} = -15 \ V, \ V_{GS} = -10 \ V, \ I_D = -7.0 \ A$ $V_{DS} = -15 \ V, \ V_{GS} = -10 \ V, \ I_D = -7.0 \ A$ $V_{DD} = -15 \ V, \ R_L = 2.7 \ \Omega$ $I_D \cong -5.6 \ A, \ V_{GEN} = -10 \ V, \ R_g = 1 \ \Omega$ $V_{DD} = -15 \ V, \ R_L = 2.7 \ \Omega$ $I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega$ $I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega$ $I_S = -5.6 \ A, \ V_{GS} = 0 \ V$		145		1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total Gate Charge	Qg	V_{DS} = - 15 V, V_{GS} = - 10 V, I_{D} = - 7.0 A		25	38	nC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Iotal Gate Charge				13	20		
$ \begin{array}{c c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ MHz & 0.4 & 2.0 & 4.0 & \Omega \\ \hline \ Turn-On \ Delay \ Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge		V_{DS} = - 15 V, V_{GS} = - 4.5 V, I_{D} = - 7.0 A		3.5		ne	
$ \begin{array}{c c c c c c c c } \hline Turn-On \ Delay \ Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Drain Charge	Q _{gd}			5.5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	R _g	f = 1 MHz	0.4	2.0	4.0	Ω	
$\begin{tabular}{ c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			10	20		
$\begin{tabular}{ c c c c c c c } \hline Fall Time & t_f & & & & & & & & & & & & & & & & & & &$	Rise Time	t _r	V_{DD} = - 15 V, R_L = 2.7 Ω		13	20		
$\begin{tabular}{ c c c c c c } \hline Turn-On Delay Time & t_d(on) & & & & & & & & & & & & & & & & & & &$	Turn-Off DelayTime	t _{d(off)}	$I_D \cong$ - 5.6 A, V_{GEN} = - 10 V, R_g = 1 Ω		23	35		
$\begin{tabular}{ c c c c c c c } \hline Turn-On Delay Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Fall Time	t _f			9	18	nc	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			38	57	115	
Fall Time t_f 1117Drain-Source Body Diode CharacteristicsContinous Source-Drain Diode Current I_S $T_C = 25 \text{ °C}$ -6.5 APulse Diode Forward Current I_{SM} -30 ABody Diode Voltage V_{SD} $I_S = -5.6 \text{ A}, V_{GS} = 0 \text{ V}$ -0.71 -1.2 VBody Diode Reverse Recovery Time t_{rr} 222 33 nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -5.6 \text{ A}, dI/dt = 100 \text{ A/µs}, T_J = 25 \text{ °C}$ 17 26 nCReverse Recovery Fall Time t_a T_a T_a T_a T_a T_a T_a	Rise Time	t _r	V_{DD} = - 15 V, R_L = 2.7 Ω		89	134		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off DelayTime	t _{d(off)}	$I_D \cong$ - 5.6 A, V_{GEN} = - 4.5 V, R_g = 1 Ω		22	33		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f			11	17		
Pulse Diode Forward CurrentIsm- 30ABody Diode Voltage V_{SD} $I_S = -5.6 \text{ A}, V_{GS} = 0 \text{ V}$ - 0.71- 1.2VBody Diode Reverse Recovery Time t_{rr} 2233nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -5.6 \text{ A}, dI/dt = 100 \text{ A/µs}, T_J = 25 °C$ 1726nCReverse Recovery Fall Time t_a nS nS nS	Drain-Source Body Diode Characteris	stics						
Pulse Diode Forward Current I_{SM} 30Body Diode Voltage V_{SD} $I_S = -5.6 \text{ A}, V_{GS} = 0 \text{ V}$ - 0.71- 1.2VBody Diode Reverse Recovery Time t_{rr} 2233nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -5.6 \text{ A}, dl/dt = 100 \text{ A/µs}, T_J = 25 ^{\circ}\text{C}$ 1726nCReverse Recovery Fall Time t_a nS nS nS	Continous Source-Drain Diode Current	۱ _s	T _C = 25 °C			- 6.5	Δ	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pulse Diode Forward Current	I _{SM}				- 30	~	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -5.6 \text{ A}, dl/dt = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$ 1726nCReverse Recovery Fall Time t_a $I_F = -5.6 \text{ A}, dl/dt = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$ 13nS	Body Diode Voltage		I _S = - 5.6 A, V _{GS} = 0 V		- 0.71	- 1.2	V	
Reverse Recovery Fall Time t_a $T_F = -5.6 \text{ A}, dl/dt = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ C}$ 13	Body Diode Reverse Recovery Time	t _{rr}			22	33	ns	
Reverse Recovery Fall Time t _a	Body Diode Reverse Recovery Charge	Q _{rr}	L = - 5 6 A dl/dt = 100 A/us T = 25 °C		17	26	nC	
	Reverse Recovery Fall Time	t _a	$F = -3.0 \text{ A}, \text{ and } = 100 \text{ Ayps}, T_{\text{J}} = 23 \text{ C}$		13		ns	
Reverse Recovery Rise Time t _b 9	Reverse Recovery Rise Time	t _b			9			

Notes:

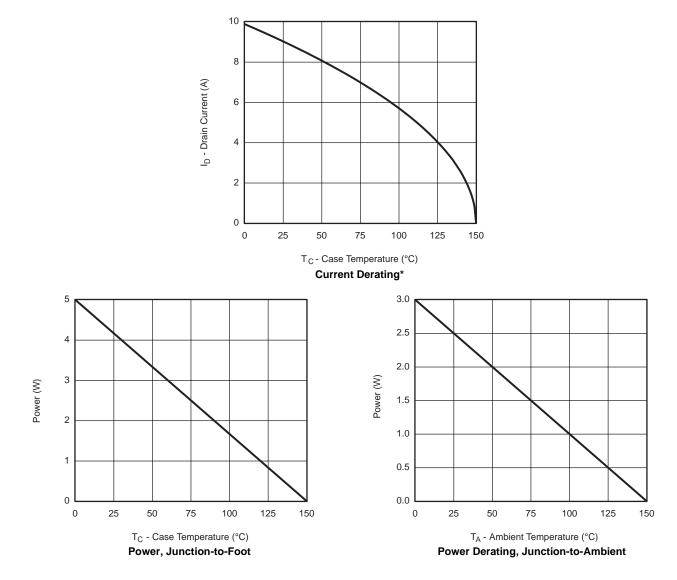
a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

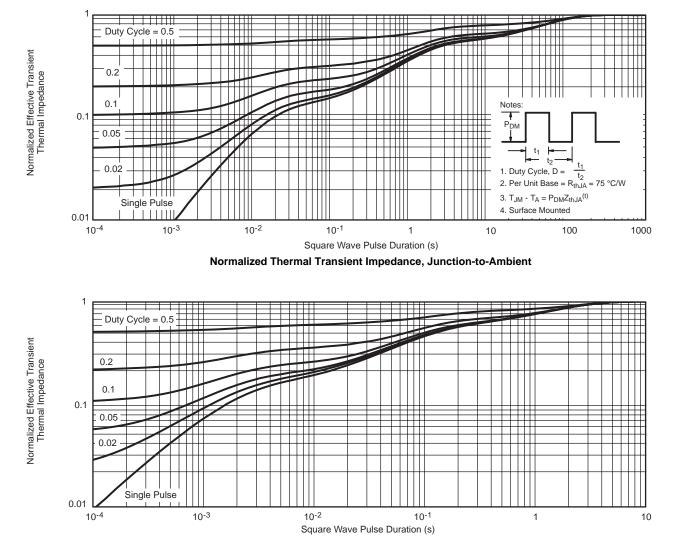

b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

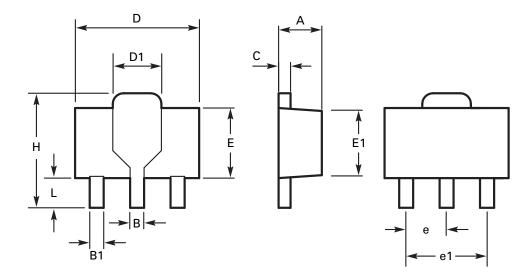

semi

www.VBsemi.com





* The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.



Normalized Thermal Transient Impedance, Junction-to-Foot

Package outline - SOT89

DIM	Millin	neters	Inc	hes	DIM	Millimeters		Inches	
	Min	Max	Min	Max		Min	Max	Min	Max
А	1.40	1.60	0.550	0.630	E	2.29	2.60	0.090	0.102
В	0.44	0.56	0.017	0.022	E1	2.13	2.29	0.084	0.090
B1	0.36	0.48	0.014	0.019	е	1.50 BSC		0.059 BSC	
С	0.35	0.44	0.014	0.017	e1	3.00 BSC		0.118	BSC
D	4.40	4.60	0.173	0.181	Н	3.94	4.25	0.155	0.167
D1	1.62	1.83	0.064	0.072	L	0.89	1.20	0.035	0.047

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.