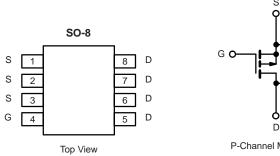


AO4443-VB Datasheet

P-Channel 40 V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)			
- 40	0.010 at V _{GS} = - 10 V	- 16.1	33 nC			
- 40	0.014 at $V_{GS} = -4.5 \text{ V}$	- 13.3	33110			

FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- 100 % R_g Tested
- 100 % UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Load Switch
- POL

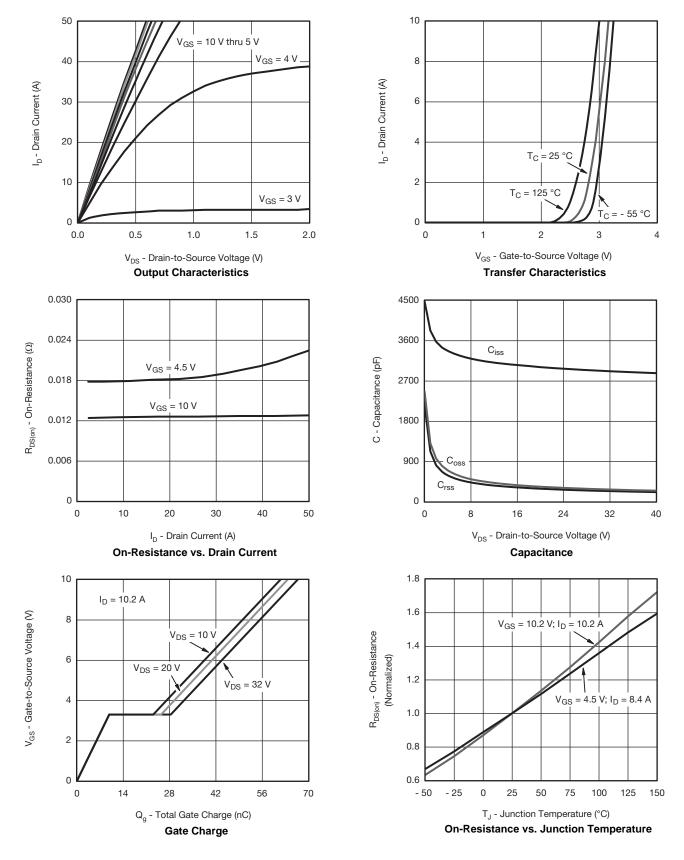
	D Channel MOCETT
View	P-Channel MOSFET

Parameter	Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	- 40	V	
Gate-Source Voltage		V _{GS}	± 20	V	
	T _C = 25 °C		- 16.1		
Continuous Dunis Courset /T 450 °C)	T _C = 70 °C	1 .	- 12.9		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	- 10.2 ^{b, c}		
	T _A = 70 °C		- 8.2 ^{b, c}	^	
Pulsed Drain Current		I _{DM}	- 50	A	
Continous Source-Drain Diode Current	T _C = 25 °C		- 5.3		
Continous Source-Drain Diode Current	T _A = 25 °C	ls -	- 2.1 ^{b, c}		
Single Pulse Avalanche Current		I _{AS}	- 28		
Single Pulse Avalanche Energy L = 0.1 mH		E _{AS}	39	mJ	
	T _C = 25 °C		6.3		
Maximum Dawar Dissination	T _C = 70 °C		4	W	
Maximum Power Dissipation	T _A = 25 °C	P _D	2.5 ^{b, c}	VV	
	T _A = 70 °C		1.6 ^{b, c}		
Operating Junction and Storage Temperature	T _J , T _{stg}	- 55 to 150	°C		

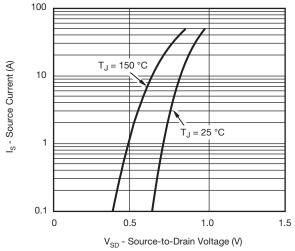
THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	37	50	°C/W		
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	16	20	- C/VV		

Notes:

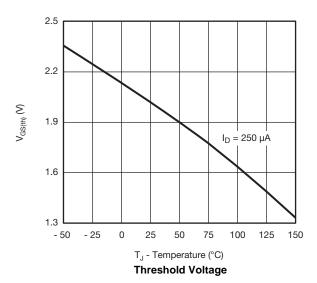
- a. Based on T_C = 25 °C.
 b. Surface mounted on 1" x 1" FR4 board.
- d. Maximum under steady state conditions is 85 °C/W.

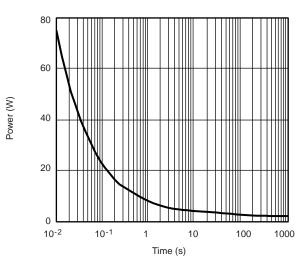

Parameter Symbol Test Conditions Min. Typ. Max. Unit Static	SPECIFICATIONS T _J = 25 °C, unless otherwise noted								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit		
V _{DS} Temperature Coefficient ΔV _{DS} /T _J V _{OS(P)} Temperature Coefficient ΔV _{DS(P)} To V _{DS(P)} Temperature Coefficient ΔV _{DS(P)} To V _{DS(DS(P)} To V _{DS(DS(P)} To V _{DS(DS(P)} To V _{DS(DS(DS(DS(P))} To V _{DS(DS(DS(DS(DS(DS(DS(DS(DS(DS(DS(DS(DS(D}	Static								
Vosigin Temperature Coefficient ΔV _{GS(th)}	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0 V, I _D = - 250 μA	- 40			V		
V _{OSCHI} , Temperature Coefficient Λ/V _{OSCHI} /T _J V _{DS} = V _{GS} , I _D = ·250 μA -1.2 S V V V V _{DS} = V _S , I _D = ·250 μA -1.2 -2.5 V A -2.5 V A -2.5 V A	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	J. 250A		- 36		m\//°C		
Sate-Source Leakage 1 _{GSS} V _{DS} = 0 V, V _{GS} = ± 20 V ± 100 nA	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	η ΙΔ = - 250 μΑ		5		IIIV/C		
Seary Sea	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	- 1.2		- 2.5	V		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA		
On-State Drain Current³ I _{D(on)} V _{DS} = -40 V, V _{GS} = 0 V, I _J = 56 °C -5 On-State Drain Current³ I _{D(on)} V _{DS} = -5 V, V _{GS} = -10 V, I _D = -10.2 A 0.010 Ω Drain-Source On-State Resistance³ R _{DS(on)} V _{GS} = -10 V, I _D = -10.2 A 0.010 Ω Forward Transconductance³ 9 fs V _{DS} = -15 V, I _D = -10.2 A 37 S Dynamic³ Input Capacitance C _{ISS} V _{DS} = -10 V, I _D = -10.2 A 3007 P Output Capacitance C _{ISS} V _{DS} = -20 V, V _{GS} = 0 V, f = 1 MHz 3007 PF Everse Transfer Capacitance C _{ISS} V _{DS} = -20 V, V _{GS} = -10 V, I _D = -10.2 A 64 95 Gate-Drain Charge Q _g V _{DS} = -20 V, V _{GS} = -10 V, I _D = -10.2 A 64 95 33 50 Gate-Drain Charge Q _g V _{DS} = -20 V, V _{GS} = -4.5 V, I _D = -10.2 A 64 95 9.8 15 15 16 15.7 10 16 15.7 10 16 15.7 10 16 15.7 10 16 16	Zana Cata Valta na Duain Commant		V _{DS} = - 40 V, V _{GS} = 0 V			- 1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	DSS	V _{DS} = - 40 V, V _{GS} = 0 V, T _J = 55 °C			- 5	μΑ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -10 \text{ V}$	- 25			Α		
Promate Transconductance Promate Transcorductance Promate Transcord	Dunin Course On Chata Basistanas	В	V _{GS} = - 10 V, I _D = - 10.2 A		0.010		Ω		
Dynamic ^b Input Capacitance C _{Iss} V _{DS} = -20 V, V _{GS} = 0 V, f = 1 MHz 3007 PF Output Capacitance C _{Oss} V _{DS} = -20 V, V _{GS} = 0 V, f = 1 MHz 335 pF Reverse Transfer Capacitance C _{rss} 291 291 Total Gate Charge Q _g V _{DS} = -20 V, V _{GS} = -10 V, I _D = -10.2 A 64 95 Gate-Source Charge Q _{gs} V _{DS} = -20 V, V _{GS} = -4.5 V, I _D = -10.2 A 9.8 nc Gate-Source Charge Q _{gs} V _{DS} = -20 V, V _{GS} = -4.5 V, I _D = -10.2 A 9.8 nc Gate-Drain Charge Q _{gs} V _{DS} = -20 V, V _{GS} = -4.5 V, I _D = -10.2 A 9.8 nc Gate-Brain Charge Q _{gs} f = 1 MHz 0.4 2 4 Ω Turn-On Delay Time t _{d(ofn)} I _D = -8.2 A, V _{GEN} = -4.5 V, R _g = 1 Ω 50 75 86 Fall Time t _t V _{DD} = -20 V, R _L = 2.4 Ω 11 20 11 12 11 20 11 12 12 11 20 12 12 11 12 12	Drain-Source On-State Resistance ⁴	KDS(on)	V _{GS} = - 4.5 V, I _D = - 8.4 A		0.014				
$ \begin{array}{ c c c c c c c } \hline \mbox{lnput Capacitance} & C_{iss} \\ \hline \mbox{Output Capacitance} & C_{oss} \\ \hline \mbox{Output Capacitance} & C_{oss} \\ \hline \mbox{Reverse Transfer Capacitance} & C_{rss} \\ \hline \mbox{Total Gate Charge} & Q_g \\ \hline \mbox{Gate-Source Charge} & Q_gs \\ \hline \mbox{Gate-Drain Charge} & Q_gd \\ \hline \mbox{Gate-Box Minimal Charge} & Q_gd \\ \hline \mbox{Gate-Box Minimal Charge} & Q_gd \\ \hline \mbox{Gate-Drain Charge} & Q_gd \\ \hline \mbox$	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 10.2 A		37		S		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic ^b				•	•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{iss}			3007				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{oss}	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		335		pF		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}			291				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Cata Charga		V _{DS} = - 20 V, V _{GS} = - 10 V, I _D = - 10.2 A		64	95	nC		
Gate-Source Charge Q_{gs} $V_{DS} = -20 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -10.2 \text{ A}$ 9.8 Gate Porain Charge Q_{gd} 15.7 15.7 Gate Resistance R_g $f = 1 \text{ MHz}$ 0.4 2 4 Ω Turn-On Delay Time $t_{d(on)}$ $V_{DD} = -20 \text{ V}, R_L = 2.4 \Omega$ 50 75 86 Fall Time t_f $V_{DD} = -20 \text{ V}, R_L = 2.4 \Omega$ 40 60 60 Fall Time t_f $V_{DD} = -20 \text{ V}, R_L = 2.4 \Omega$ 11 20 11 20 Rise Time t_f $V_{DD} = -20 \text{ V}, R_L = 2.4 \Omega$ 11 20 11 20 11 20 11 20 12 12 45 68	Total Gate Charge				33	50			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q_{gs}	$V_{DS} = -20 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -10.2 \text{ A}$		9.8				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	Q_{gd}			15.7				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	R_g	f = 1 MHz	0.4	2	4	Ω		
Turn-Off Delay Time $t_{d(off)}$ $I_D \cong -8.2 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$ 40 60 Fall Time t_f 17 26 Turn-On Delay Time $t_{d(on)}$ 13 20 Rise Time t_r $V_{DD} = -20 \text{ V}, R_L = 2.4 \Omega$ 11 20 Turn-Off Delay Time $t_d(off)$ $I_D \cong -8.2 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$ 45 68 Fall Time t_f 9 18 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current I_S $T_C = 25 \text{ °C}$ -5.3 A Pulse Diode Forward Current I_{SM} -50 -50 A Body Diode Voltage V_{SD} $I_S = -8.2 \text{ A}, V_{GS} = 0 \text{ V}$ -0.8 -1.2 V Body Diode Reverse Recovery Time t_{rr} $I_F = -8.2 \text{ A}, dI/dt = 100 \text{ A}/\mu_S, T_J = 25 °C$ 41 62 nC Reverse Recovery Fall Time t_a t_a t_a t_a t_a t_a t_a t_a	Turn-On Delay Time	t _{d(on)}			57	86			
Fall Time t_f 17 26 Turn-On Delay Time $t_{d(on)}$ 13 20 Rise Time t_r $V_{DD} = -20 \text{ V}, R_L = 2.4 \Omega$ 11 20 Turn-Off Delay Time $t_{d(off)}$ $I_D \cong -8.2 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$ 45 68 Fall Time t_f 9 18 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current I_S $T_C = 25 \text{ °C}$ -5.3 A Pulse Diode Forward Current I_{SM} -50 -50 A Body Diode Voltage V_{SD} $I_S = -8.2 \text{ A}, V_{GS} = 0 \text{ V}$ -0.8 -1.2 V Body Diode Reverse Recovery Time t_{rr} 36 54 ns Body Diode Reverse Recovery Charge Q_{rr} $I_F = -8.2 \text{ A}, \text{ dl/dt} = 100 \text{ A/μs}, T_J = 25 \text{ °C}$ 41 62 nC Reverse Recovery Fall Time I_A 20	Rise Time	t _r	V_{DD} = - 20 V, R_L = 2.4 Ω		50	75			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	$I_D \cong -8.2 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$		40	60			
Turn-On Delay Time $t_{d(on)}$ Rise Time t_r $V_{DD} = -20 \text{ V}, R_L = 2.4 \Omega$ $I_D \cong -8.2 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$ $Drain-Source Body Diode Characteristics$ $Continuous Source-Drain Diode Current$ I_S $Drain-Source Body Diode Characteristics$ $Continuous Source-Drain Diode Current$ I_{SM} I_{SM} I_{SM} $I_{S} = -8.2 \text{ A}, V_{GS} = 0 \text{ V}$	Fall Time	t _f			17	26			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			13	20	115		
Fall Time t_f 9 18 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current t_S $t_C = 25 ^{\circ}\text{C}$ t	Rise Time	t _r	V_{DD} = - 20 V, R_L = 2.4 Ω		11	20			
	Turn-Off Delay Time	t _{d(off)}	$I_D \cong$ - 8.2 A, V_{GEN} = - 10 V, R_g = 1 Ω		45	68			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f			9	18			
Pulse Diode Forward Current I_{SM} -50 Body Diode Voltage V_{SD} $I_S = -8.2 \text{ A}, V_{GS} = 0 \text{ V}$ $-0.8 -1.2 \text{ V}$ Body Diode Reverse Recovery Time t_{rr} 36 54 ns Body Diode Reverse Recovery Charge Q_{rr} $I_F = -8.2 \text{ A}, dI/dt = 100 \text{ A/µs}, T_J = 25 °C$ Reverse Recovery Fall Time t_a Q_{rr}	Drain-Source Body Diode Characteristics								
Pulse Diode Forward Current I_{SM} -50 Body Diode Voltage V_{SD} $I_S = -8.2 \text{ A}, V_{GS} = 0 \text{ V}$ $-0.8 -1.2 \text{ V}$ Body Diode Reverse Recovery Time t_{rr} $36 54 \text{ ns}$ Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = -8.2 \text{ A}, \text{ dl/dt} = 100 \text{ A/µs}, T_J = 25 °C$ Q_{rr}	Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			- 5.3	Δ		
Body Diode Reverse Recovery Time t_{rr} 36 54 ns Body Diode Reverse Recovery Charge Q_{rr} $I_F = -8.2 \text{ A}, \text{ dI/dt} = 100 \text{ A/µs}, T_J = 25 °C$ 41 62 nC Reverse Recovery Fall Time t_a	Pulse Diode Forward Current					- 50			
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -8.2 \text{ A}, \text{ dI/dt} = 100 \text{ A/µs}, T_J = 25 °C $ 41 62 nC Reverse Recovery Fall Time t_a	Body Diode Voltage	V _{SD}	I _S = -8.2 A, V _{GS} = 0 V		- 0.8	- 1.2	V		
Reverse Recovery Fall Time t_a $I_F = -8.2 \text{ A}, \text{ dl/dt} = 100 \text{ A/µs}, I_J = 25 \text{ °C}$ 20	Body Diode Reverse Recovery Time	t _{rr}			36	54	ns		
Reverse Recovery Fall Time t _a 20 20	Body Diode Reverse Recovery Charge	Q _{rr}			41	62	nC		
	Reverse Recovery Fall Time	t _a	i _F = -0.2 Λ, απαι = 100 Αγμο, 1 _J = 25 °C		20		ns		
Reverse Recovery Rise Time t _b	Reverse Recovery Rise Time	t _b			16				

Notes:

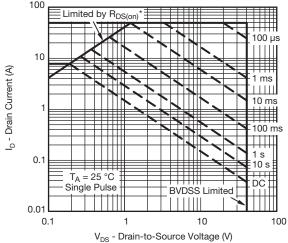

- a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %. b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



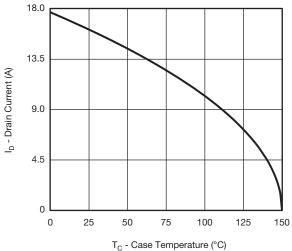


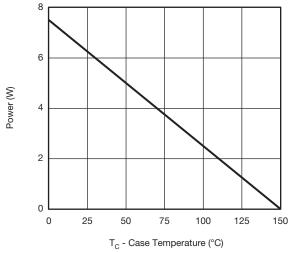
Source-Drain Diode Forward Voltage



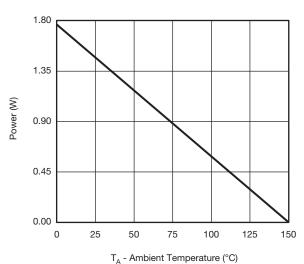
 $C_{\text{O}} = 10.2 \text{ A}$ C_{\text

On-Resistance vs. Gate-to-Source Voltage

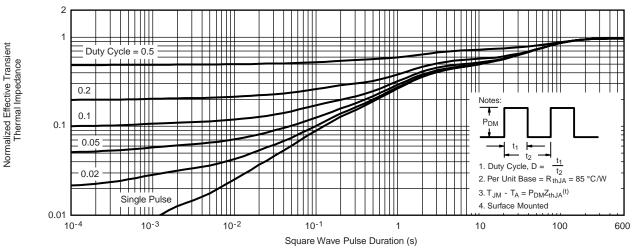

Single Pulse Power (Junction-to-Ambient)

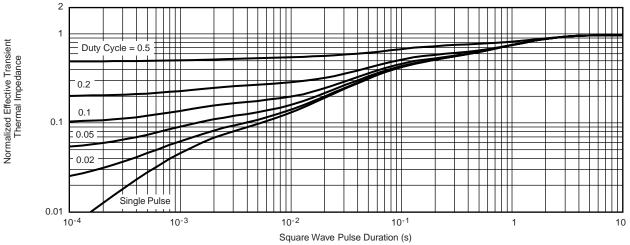

 $^{*}V_{GS}$ > minimum V_{GS} at which $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Ambient

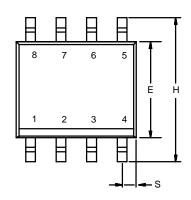


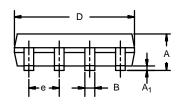
Current Derating*

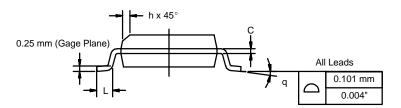



Power, Junction-to-Ambient

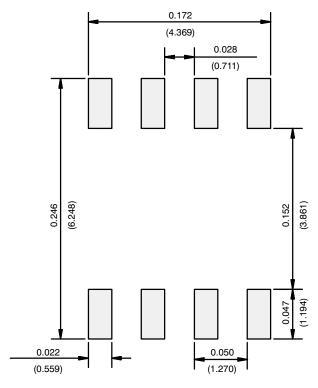
 $^{^*}$ The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.






Normalized Thermal Transient Impedance, Junction-to-Foot

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012



	MILLIMETERS		INCHES		
DIM	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
С	0.19	0.25	0.0075	0.010	
D	4.80	5.00	0.189	0.196	
Е	3.80	4.00	0.150	0.157	
е	1.27 BSC		0.050 BSC		
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	
FCN: C-06527-Rev. I. 11-Sep-06					

ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.