

MCU with 2KB SRAM and 64KB ECC E-Flash

GENERAL DESCRIPTION

CS8977 is a general-purpose MCU with 64KB Code e-Flash memory with ECC and 2KB SRAM with ECC. The embedded flash for code storage has a builtin ECC that corrects one-bit errors and detects two-bit errors. CPU accesses the e-Flash through program address read and through Flash Controller which can perform software read/write operations of e-Flash.

CS8977 has a 1-T 8051 with enhanced multiplication and division accelerator. There are three clock sources for the system. One is a 16MHz/32MHz IOSC (manufacturer calibration+/- 2%), another is XCLK, and the other one is SOSC32KHz (typical 32KHz) which is divided by the slow oscillator. ALL clock sources have a clock programmable divider for scaling down the frequency to save power dissipations. The clock selections are combined with flexible power management schemes, including NORMAL, IDLE, STOP, and SLEEP modes to balance speed and power consumption.

There are T0/T1/T2/T3/T4/T5 timers coupled with CPU and three WDTs where WDT1 is clocked by SYSCLK, and WDT2/WDT3 are clocked by a non-stop SOSC32KHz. An 8-bit/16-bit checksum and 16-bit CRC accelerator is included. There are EUART/LIN controllers, I2C master/slave controllers and SPI master/slave controller. The interfaces of these controllers are multiplexed with GPIO pins. Other useful peripherals include a buzzer control, six 8/10/12-bit PWMs, one channel of 16-bit timer/capture, and one 16-bit quadrature decoder. There are also 16 channels 8-bit PWM for LED control.

Analog peripherals include a 12-bit ADC with an internal temperature sensor, an 8-bit voltage output DAC, and four analog comparators with a programmable threshold. A touch key controller with up to 20-bit resolution is included. The touch key controller has shield output capability for moisture immunity and allows auto-detection wakeup from sleep mode (under 20uA). The maximum number of key inputs can be scanned is 27. The touch key controller can also be used for proximity sensing.

CS8977 provides a flexible means of flash programming that supports ISP and IAP. The protection of data loss is implemented in hardware by access restriction of critical storage segments. The code security is reinforced with sophisticated writer commands and ISP commands. The on-chip breakpoint processor also allows easy debugging which can be integrated with ISP. A reliable power-on-reset circuit and a low supply voltage detection allow reliable operations under harsh environments.

APPLICATIONS

- Touch key applications with high robustness and reliability requirements
- Automotive and appliance

FEATURES

CPU and Memory

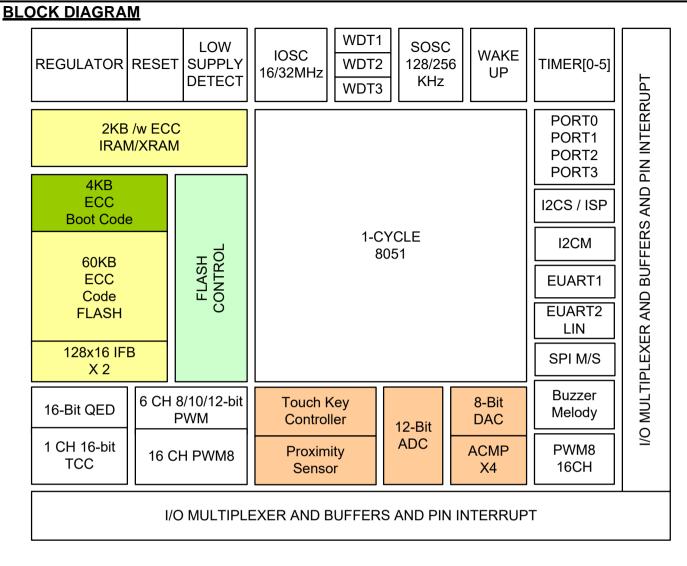
- Up to 32MHz 1-Cycle 8051 CPU core
- 16-bit Timers T0/T1/T2/T3/T4 and 24-bit Timer T5
- Checksum and CRC accelerator
- WDT1 by SYSCLK, WDT2/WDT3 by SOSC32KHz
- Clock fault monitoring
- All GPIO pins can be assigned to two external interrupts
- Power-saving modes IDLE, STOP, and SLEEP
- 256B IRAM and 1792B XRAM with ECC check
- 64KB Code e-Flash with ECC and two 128x16 Information Block
 - Code security and data loss protection
 - 100K endurance and 10 years retention

Clock Sources

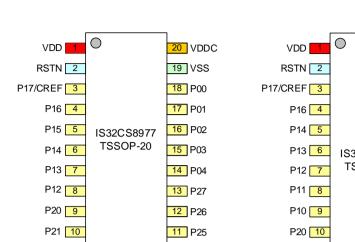
- Internal oscillator at 16MHz/32MHz(+/- 2%)
 Spread Spectrum option
- Internal low power oscillator 128KHz/256KHz
- External clock option and clock out

Digital Peripherals

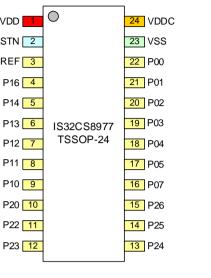
- 6 CH 8/10/12-bit center-aligned PWM controller
 - Trigger interrupt and ADC conversion
- 16 CH 8-bit PWM left/right alignment
- One 16-bit Timer/Capture and One 16-bit quadrature decoder
- Buzzer/Melody generator
- One I²C Master
- One I²C Slave also for ISP and debug
- One SPI Master/ Slave Controller
- One EUART1 and one EUART2/LIN

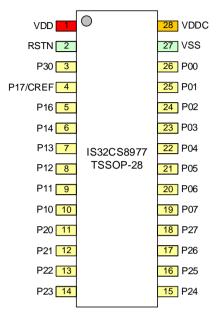

Analog Peripherals

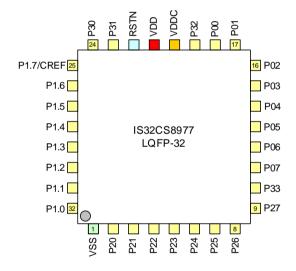
- Capacitance sense touch-key controller scan up to 27 key
 - Shield output for moisture immunity
 - Low power sleep mode wakeup (<20uA).
 - Active Proximity sensing front-end
- 12-Bit SAR ADC with GPIO analog input
 Temperature sensor and supply measurement
- 8-Bit DAC and four analog comparators
- Power-on reset and Low voltage detection (2.2V-4.5V)

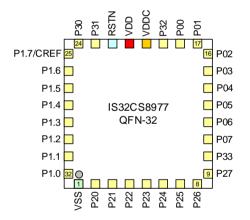

Miscellaneous

- Up to 28 GPIO pins with multi-function options
 Configurable IO structure and noise filters
- 2.3V to 5.5V single supply
- Active current < 150uA/MHz in Normal mode
- Low power standby (1uA) in SLEEP mode
- Operating temperature -40°C to 125°C
- TSSOP20/24/28, wettable flank QFN-32 (WQFN-32) and LQFP32 package
- RoHS & Halogen-Free compliant package
- TSCA Compliance
- AEC-Q100 qualification









PINOUT

PIN Description and Multifunction Table

TSSOP 20	TSSOP 24	TSSOP 28	LQFP/ QFN 32	NAME	TYPE	ANIO1	ANIO2	PIN DESCRIPTION
1	1	1	21	VDD	Р	-	-	Supply Voltage 2.3V to 5.5V
20	24	28	20	VDDC	P/O	-	-	Internal 1.5V supply Connect to external 1.0uF decoupling capacitor.
2	2	2	22	RSTN	IO	-	-	Active low reset input with internal 5K Ohm pull-up.
19	23	27	1	VSS	G			VSS
18	22	26	18	P00	IO/A	KEY	ADCA	Port 0.0 I/O with multi-function. This pin also defaults to I2CS SDA for ISP
17	21	25	17	P01	IO/A	KEY	ADCB	Port 0.1 I/O with multi-function. This pin also defaults to I2CS SCL for ISP
16	20	24	16	P02	IO/A	KEY	DAC	Port 0.2 I/O with multi-function.
15	19	23	15	P03	IO/A	KEY	CMPA	Port 0.3 I/O with multi-function.
14	18	22	14	P04	IO/A	KEY	CMPB	Port 0.4 I/O with multi-function.
	17	21	13	P05	IO/A	KEY	CMPC	Port 0.5 I/O with multi-function.
		20	12	P06	IO/A	KEY	CMPD	Port 0.6 I/O with multi-function.
	16	19	11	P07	IO/A	KEY	CMPTH	Port 0.7 I/O with multi-function.
	9	10	32	P10	IO/A	KEY	ADCA	Port 1.0 I/O with multi-function.
	8	9	31	P11	IO/A	KEY	ADCB	Port 1.1 I/O with multi-function.
8	7	8	30	P12	IO/A	KEY	SHIELD	Port 1.2 I/O with multi-function.
7	6	7	29	P13	IO/A	KEY	CMPTH	Port 1.3 I/O with multi-function.
6	5	6	28	P14	IO/A	KEY	CMPD	Port 1.4 I/O with multi-function.
5			27	P15	IO/A	KEY	CMPC	Port 1.5 I/O with multi-function.
4	4	5	26	P16	IO/A	KEY	CMPB	Port 1.6 I/O with multi-function.
3	3	4	25	P17	IO/A	CREF	СМРА	Port 1.7 I/O with multi-function. Also serves as CREF for touch key controller
9	10	11	2	P20	IO/A	KEY	SHIELD	Port 2.0 I/O with multi-function.
10		12	3	P21	IO/A	KEY	SHIELD	Port 2.1 I/O with multi-function.
	11	13	4	P22	IO/A	KEY	SHIELD	Port 2.2 I/O with multi-function.
	12	14	5	P23	IO/A	KEY	CMPA	Port 2.3 I/O with multi-function.
	13	15	6	P24	IO/A	KEY	CMPB	Port 2.4 I/O with multi-function.
11	14	16	7	P25	IO/A	KEY	CMPC	Port 2.5 I/O with multi-function.
12	15	17	8	P26	IO/A	KEY	CMPD	Port 2.6 I/O with multi-function.
13		18	9	P27	IO/A	KEY	CMPTH	Port 2.7 I/O with multi-function.
		3	24	P30	IO/A	KEY	ADCA	Port 3.0 I/O with multi-function.
			23	P31	IO/A	KEY	ADCB	Port 3.1 I/O with multi-function.
			19	P32	IO/A	KEY	DAC	Port 3.2 I/O with multi-function.
			10	P33	IO/A	KEY	SHIELD	Port 3.3 I/O with multi-function.

Note: If customers would like to use our CS89XX Touch Key Library software tool, please refer to our IS3XCS89XX Touch Key Library Tool User's Manual before starting your hardware schematics design.

Each GPIO pin can use MFCFG register to select pin functions. The function table is shown as the following table.

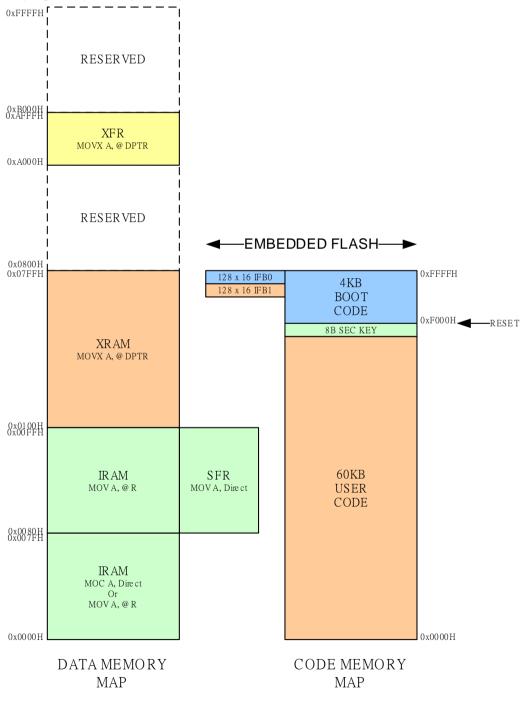
MFCFG[5-0]	Function NAME	FUNCTION DESCRIPTION
00000	LOW	This forces the output to logic low state. Actual output depends on OPOL setting in IOCFG register.
000001	GPIO	8051 GPIO port
000010	SCK	SPI SCK input or output depends on SPI MS setting.
000011	SDI	SPI SDI input corresponds to MI or SI depending on SPI MS setting.

	,,,,	
000100	SDO	SPI SDO output corresponds to MO or SO depending on SPI MS setting.
000101	SSN	SPI SSN input or output depends on SPI MS setting.
000110	SSCL	I2C Slave SCL I/O
000111	SSDA	I2C Slave SDA I/O
001000	MSCL	I2C Master SCL I/O
001001	MSDA	I2C Master SDA I/O
001010	TX1	EUART1 TX output
001011	RX1	EUART1 RX input
001100	TX2	EUART2/LIN TX output
001101	RX2	EUART2/LIN RX input
001110	BZ	Buzzer/Melody output
001111	XCLK	External system clock input
010000	Т0	Timer 0 input
010001	T1	Timer 1 input
010010	T2	Timer 2 input
010011	IDX	Quadrature Encoder IDX (Index) input
010100	PHA	Quadrature Encoder PHA (Phase A) input
010101	PHB	Quadrature Encoder PHA (Phase B) input
010110	XCAPT	TCC (Timer Compare/Capture) Capture Input
010111	TC	TCC (Timer Compare/Capture) Terminal Count output
011000	CC	TCC (Timer Compare/Capture) Compare Count output
011001	PWM0	PWM Channel 0 output
011010	PWM1	PWM Channel 1 output
011011	PWM2	PWM Channel 2 output
011100	PWM3	PWM Channel 3 output
011101	PWM4	PWM Channel 4 output
011110	PWM5	PWM Channel 5 output
011111	HIGH	This forces the output to logic high state. Actual output depends on OPOL setting in IOCFG register
100000	PSTX	Proximity Sensor TX output
100001	CLKO	Clock Output
100010	PWM8-L	PWM8 left output
100011	PWM8-R	PWM8 right output

**** MFCFG[5-0] default is 000000 after reset, thus default state is output logic low.

Note:

There are 16 channels of PWM - PWM0 to PWM15. The even channel is left-aligned and the odd channel is rightaligned. And the two of the continuous even and odd channels are grouped to map to two GPIO as follows. Each can be selected to be even or odd aligned by PWML and PWMR.


GPIO00 and GPIO01 are mapped to PWM0 and PWM1. GPIO02 and GPIO03 are mapped to PWM2 and PWM3. GPIO04 and GPIO05 are mapped to PWM4 and PWM5. GPIO06 and GPIO07 are mapped to PWM6 and PWM7. GPIO10 and GPIO11 are mapped to PWM8 and PWM9. GPIO12 and GPIO13 are mapped to PWM10 and PWM11. GPIO14 and GPIO15 are mapped to PWM12 and PWM13. GPIO16 and GPIO17 are mapped to PWM14 and PWM15. GPIO20 and GPIO21 are mapped to PWM0 and PWM1. GPIO22 and GPIO23 are mapped to PWM0 and PWM1. GPIO22 and GPIO23 are mapped to PWM2 and PWM3. GPIO24 and GPIO25 are mapped to PWM4 and PWM5. GPIO26 and GPIO27 are mapped to PWM6 and PWM7. GPIO30 and GPIO31 are mapped to PWM8 and PWM9. GPIO32 and GPIO33 are mapped to PWM8 and PWM9.

IS32CS8977 MEMORY MAP

There is a total of 256 bytes of internal RAM in CS8977, the same as standard 8052. There is a total of 1792 bytes of auxiliary RAM allocated in the 8051 extended RAM area at 0x0100h - 0x07FFh. Programs can use "MOVX" instructions to access the XRAM.

There is a 64Kx16 embedded Flash memory for code storage. For CPU program access (Read-Only), the lower byte is used for actual access, and the upper byte is used for ECC check. The ECC is performed in nibble bases with each nibble in the high byte corresponding to the nibbles in the low byte. ECC in this case is capable of one-bit correction and two-bit detection for each nibble. This is significantly more robust than 8:5 ECC. ECC check of program access is through hardware and performed automatically. The embedded Flash can also be accessed through the Flash controller. The Flash controller allows both read/write access and is always in 16-bit width with no ECC. For erase operations, the page size of the Flash is 512x16. There are two 128x16 IFB blocks in the Flash. The first IFB is used for manufacturer and calibration data, and some areas are as user OTP data. The 2nd IFB is open for user applications with no restriction. Also please note that there is an 8-byte code security key located at the last 8 bytes of user program space to prevent pirate access to information.

REGISTER MAP SFR (0x80 – 0xFF)

The SFR address map maintains maximum compatibilities to most existing 8051-like MCU. The following table shows the SFR address map. Since SFR can be accessed by direct addressing mode, registers of built-in peripherals that require fast access are mostly located in SFR. XFR is mainly used for on-chip peripheral control and configurations.

	0	1	2	3	4	5	6	7
0XF0	В	-	=	-	I2CMSA	I2CMCR	I2CMBUF	I2CMTP
0XE0	ACC	-	-	-	-	-	-	-
0XD0	PSW	-	-	-	-	-	-	-
0XC0	-	SBRK1	SCON2	I2CMTO	PMR	STATUS	MCON	ТА
0XB0	P3	SCON1	SCN1X	SFIFO1	SBUF1	SINT1	SBR1L	SBR1H
0XA0	P2	SPICR	SPIMR	SPIST	SPIDATA	SFIFO2	SBUF2	SINT2
0X90	P1	EXIF	WTST	DPX	-	DPX1	-	-
0X80	P0	SP	DPL	DPH	DPL1	DPH1	DPS	PCON
	8	9	A	В	С	D	E	F
0XF8	EXIP	MD0	MD1	MD2	MD3	MD4	MD5	ARCON
0XE8	EXIE	-	MXAX	-	-	-	-	-
0XD8	WDCON	-	DPXR	I2CSCON2	I2CSST2	I2CSADR2	I2CSDAT2	I2CSADR2A
0XC8	T2CON	ТВ	RLDL	RLDH	TL2	TH2	ADCCTLA	T34CON
0XB8	IP	ADCCTLB	ADCL	ADCH	-	-	-	-
0XA8	Ē	ADCCFG	-	-	TL4	TH4	TL3	TH3
0X98	-	-	-	ESP	-	ACON	-	WKMASK
		TMOD	TL0	TL1	THO	TH1	CKCON	CKSEL

REGISTER MAP XFR (0xA000 - 0xAFFF)

	0	1	2	3	4	5	6	7
A000	REGTRM	IOSCITRM	IOSCVTRM	-	-	-	CLKOUT	SOSCTRM
A010	LVDCFG	LVDTHD	LVDHYS	-	TSTMON	FLSHVDD	BSTCMD	RSTCMD
A020	FLSHDATL	FLSHDATH	FLSHADL	FLSHADH	FLSHECC	FLSHCMD	ISPCLKF	FLSHPRTC
A030	FLSHPRT0	FLSHPRT1	FLSHPRT2	FLSHPRT3	FLSHPRT4	FLSHPRT5	FLSHPRT6	FLSHPRT7
A040	NTAFRQL	NTAFRQH	NTADUR	NTAPAU	NTBFRQL	NTBFRQH	NTBDUR	NTBPAU
A050	TCCFG1	TCCFG2	TCCFG3	-	TCPRDL	TCPRDH	TCCMPL	ТССМРН
A060	TCCPTRL	TCCPTRH	TCCPTFL	TCCPTFH	-	-	-	-
A070	QECFG1	QECFG2	QECFG3	-	QECNTL	QECNTH	QEMAXL	QEMAXH
					~~~~	4-0		<b>A</b>
	8	9	A	В	C	D	E	F
A008		-		B APSCFGD		-	-	-
	8	9	A		С	D	E	F
A008	8 APSCFGA	9 APSCFGB	A APSCFGC	APSCFGD	C TK3CFGE	D PECCCFG	E PECCADL	F PECCADH
A008 A018	8 APSCFGA TK3CFGA TK3BASEL	9 APSCFGB TK3CFGB	A APSCFGC TK3CFGC	APSCFGD TK3CFGD	C TK3CFGE TK3HDTYL	D PECCCFG TK3HDTYH	E PECCADL TK3LDTYL	F PECCADH TK3LDTYH
A008 A018 A028	8 APSCFGA TK3CFGA TK3BASEL	9 APSCFGB TK3CFGB TK3BASEH	A APSCFGC TK3CFGC TK3THDL	APSCFGD TK3CFGD TK3THDH	C TK3CFGE TK3HDTYL TK3PUD	D PECCCFG TK3HDTYH DECCCFG	E PECCADL TK3LDTYL	F PECCADH TK3LDTYH
A008 A018 A028 A038	8 APSCFGA TK3CFGA TK3BASEL CMPCFGAB	9 APSCFGB TK3CFGB TK3BASEH CMPCFGCD	A APSCFGC TK3CFGC TK3THDL CMPVTH0	APSCFGD TK3CFGD TK3THDH	C TK3CFGE TK3HDTYL TK3PUD DACCFG	D PECCCFG TK3HDTYH DECCCFG CMPST	E PECCADL TK3LDTYL DECCADL -	F PECCADH TK3LDTYH DECCADH -
A008 A018 A028 A038 A048	8 APSCFGA TK3CFGA TK3BASEL CMPCFGAB	9 APSCFGB TK3CFGB TK3BASEH CMPCFGCD	A APSCFGC TK3CFGC TK3THDL CMPVTH0	APSCFGD TK3CFGD TK3THDH	C TK3CFGE TK3HDTYL TK3PUD DACCFG	D PECCCFG TK3HDTYH DECCCFG CMPST	E PECCADL TK3LDTYL DECCADL -	F PECCADH TK3LDTYH DECCADH -

	0	1	2	3	4	5	6	7
A080	PWMCFG1	PWMCFG2	PWMCFG3	-	PWM0DTYL	PWM0DTYH	PWM1DTYL	PWM1DTYH
A090	LINCTRL	LINCNTRH	LINCNTRL	LINSBRH	LINSBRL	LININT	LININTEN	-
A0A0	PWMDTY0	PWMDTY1	PWMDTY2	PWMDTY3	PWMDTY4	PWMDTY5	PWMDTY6	PWMDTY7
A0B0	LINTCON	TXDTOL	TXDTOH	RXDTOL	RXDTOH	BSDCLRL	BSDCLRH	BSDWKC
A0C0	FLSHPPT0	FLSHPPT1	FLSHPPT2	FLSHPPT3	FLSHPPT4	FLSHPPT5	FLSHPPT6	FLSHPPT7
A0D0	-	-	-	-	-	-	-	-
A0E0	BPINTF	BPINTE	BPINTC	BPCTRL	-	-	-	-
A0F0	PC1AL	PC1AH	PC1AT	-	PC2AL	PC2AH	PC2AT	-
1								
	8	9	A	В	С	D	E	F
A088		9 PWM2DTYH		B PWM3DTYH		D PWM4DTYH		F PWM5DTYH
A088 A098		_						
	PWM2DTYL	PWM2DTYH	PWM3DTYL DBPCIDT	PWM3DTYH DBPCNXL	PWM4DTYL DBPCNXH	PWM4DTYH	PWM5DTYL STEPCTRL	PWM5DTYH SI2CDBGID
A098	PWM2DTYL DBPCIDL	PWM2DTYH DBPCIDH	PWM3DTYL DBPCIDT	PWM3DTYH DBPCNXL	PWM4DTYL DBPCNXH	PWM4DTYH DBPCNXT	PWM5DTYL STEPCTRL	PWM5DTYH SI2CDBGID
A098 A0A8	PWM2DTYL DBPCIDL PWMDTY8	PWM2DTYH DBPCIDH	PWM3DTYL DBPCIDT	PWM3DTYH DBPCNXL	PWM4DTYL DBPCNXH	PWM4DTYH DBPCNXT	PWM5DTYL STEPCTRL	PWM5DTYH SI2CDBGID
A098 A0A8 A0B8	PWM2DTYL DBPCIDL PWMDTY8 BSDACT	PWM2DTYH DBPCIDH	PWM3DTYL DBPCIDT	PWM3DTYH DBPCNXL	PWM4DTYL DBPCNXH	PWM4DTYH DBPCNXT	PWM5DTYL STEPCTRL	PWM5DTYH SI2CDBGID
A098 A0A8 A0B8 A0C8	PWM2DTYL DBPCIDL PWMDTY8 BSDACT FLSHPTI	PWM2DTYH DBPCIDH PWMDTY9 - -	PWM3DTYL DBPCIDT PWMDTY10 - -	PWM3DTYH DBPCNXL PWMDTY11 - -	PWM4DTYL DBPCNXH PWMDTY12 - -	PWM4DTYH DBPCNXT PWMDTY13 - -	PWM5DTYL STEPCTRL	PWM5DTYH SI2CDBGID



	0	1	2	3	4	5	6	7
A100	IOCFGO00	IOCFGO01	IOCFGO02	IOCFGO03	IOCFGO04	IOCFGO05	IOCFGO06	IOCFGO07
A110	IOCFGI00	IOCFGI01	IOCFGI02	IOCFGI03	IOCFGI04	IOCFGI05	IOCFGI06	IOCFGI07
A120	MFCFG00	MFCFG01	MFCFG02	MFCFG03	MFCFG04	MFCFG05	MFCFG06	MFCFG07
A130	IOCFGO20	IOCFGO21	IOCFGO22	IOCFGO23	IOCFGO24	IOCFGO25	IOCFGO26	IOCFGO27
A140	IOCFGI20	IOCFGI21	IOCFGI22	IOCFGI23	IOCFGI24	IOCFGI25	IOCFGI26	IOCFGI27
A150	MFCFG20	MFCFG21	MFCFG22	MFCFG23	MFCFG24	MFCFG25	MFCFG26	MFCFG27
A160	-	-	-	-	-	-	-	-
A170	-	-	-	-	-	-	-	-
	8	9	А	В	С	D	E	F
A108	8 IOCFGO10	9 IOCFGO11	A IOCFGO12	B IOCFGO13	C IOCFGO14	D IOCFGO15	E IOCFGO16	F IOCFGO17
A108 A118								
-	IOCFGO10	IOCFG011	IOCFGO12	IOCFGO13	IOCFGO14	IOCFGO15	IOCFGO16	IOCFGO17
A118	IOCFGO10 IOCFGI10	IOCFGO11 IOCFGI11	IOCFGO12 IOCFGI12	IOCFGO13 IOCFGI13	IOCFGO14 IOCFGI14	IOCFGO15 IOCFGI15	IOCFGO16 IOCFGI16	IOCFGO17 IOCFGI17
A118 A128	IOCFGO10 IOCFGI10 MFCFG10	IOCFG011 IOCFGI11 MFCFG11	IOCFG012 IOCFGI12 MFCFG12	IOCFGO13 IOCFGI13 MFCFG13	IOCFGO14 IOCFGI14	IOCFGO15 IOCFGI15	IOCFGO16 IOCFGI16	IOCFGO17 IOCFGI17
A118 A128 A138	IOCFGO10 IOCFGI10 MFCFG10 IOCFGO30	IOCFG011 IOCFGI11 MFCFG11 IOCFG031	IOCFG012 IOCFGI12 MFCFG12 IOCFG032	IOCFG013 IOCFGI13 MFCFG13 IOCFG033	IOCFGO14 IOCFGI14	IOCFG015 IOCFGI15 MFCFG15 -	IOCFGO16 IOCFGI16	IOCFGO17 IOCFGI17
A118 A128 A138 A148	IOCFG010 IOCFGI10 MFCFG10 IOCFG030 IOCFGI30	IOCFG011 IOCFGI11 MFCFG11 IOCFG031 IOCFGI31	IOCFG012 IOCFG112 MFCFG12 IOCFG032 IOCFG132	IOCFG013 IOCFGI13 MFCFG13 IOCFG033 IOCFGI33	IOCFGO14 IOCFGI14 MFCFG14 - -	IOCFG015 IOCFGI15 MFCFG15 - -	IOCFGO16 IOCFGI16	IOCFGO17 IOCFGI17



1. 8051 CPU

### 1.1 CPU Register

#### ACC (0xE0) Accumulator R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		ACC[7-0]									
WR				ACC	[7-0]						

ACC is the CPU accumulator register and is involved in the direct operations of many instructions. ACC is bitaddressable.

#### B (0xF0) B Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		B[7-0]									
WR				B[7	7-0]						

B register is used in standard 8051 multiplication and division instructions and is also used as an auxiliary register for temporary storage. B is also bit-addressable.

#### PSW (0xD0) Program Status Word R/W (0x00)

	7	6	5	4	3	2	1	0
RD	CY	AC	F0	RS1	RS0	OV	UD	Р
WR	CY	AC	F0	RS1	RS0	OV	UD	Р

С	Y	Carry Flag
Α	С	Auxiliary Carry Flag (BCD Operations)
F	0	General Purpose
R	S1, RS0	Register Bank Select
С	V	Overflow Flag
U	D	User Defined (reserved)
Ρ		Parity Flag

#### SP (0x81) Stack Pointer R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		SP[7-0]									
WR				SP[	7-0]						

PUSH will result in ACC being written to SP+1 address. POP will load ACC from IRAM with the address of SP.

#### ESP (0x9B) Extended Stack Pointer R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		ESP[7-0]							
WR		ESP[7-0]							

In FLAT address mode, ESP and SP together form a 16-bit address for the stack pointer. ESP holds the higher byte of the 16-bit address.

#### STATUS (0xC5) Program Status Word RO(0x00)

	(0x00) 1 10gi			/				
	7	6	5	4	3	2	1	0
RD	-	HIP	LIP	-	-	-	-	-
WR	-	-	-	-	-	-	-	-
	HIPHigh Priority (HP) Interrupt Status HIP=0 indicates no HP interrupt. HIP=1 indicates HP interrupt progressing LOW Priority (LP) Interrupt Status LIP=0 indicates no LP interrupt. LIP=1 indicates LP interrupt progressing.							
SPTA1 UART1 Transmit Activity Status								



	SPTA1=0 indicates no UART1 transmit activity.
	SPTA1=1 indicates UART1 transmit active.
SPRA1	UART1 Receive Activity Status
	SPRA1=0 indicates no UART1 receive activity.
	SPRA1=1 indicates UART1 receive active.
SPTA0	UART0 Transmit Activity Status
	SPTA0=0 indicates no UART0 transmit activity.
	SPTA0=1 indicates UART0 transmit active.
SPRA0	UART0 Receive Activity Status
	SPRA0=0 indicates no UART0 receive activity.
	SPRA0=1 indicates UART0 receive active.

The program should check status conditions before entering SLEEP, STOP, IDLE, or PMM modes to prevent the loss of intended functions from delayed entry until these events are finished.

In CS8977, the UART0 and UART1 are not implemented, so the SPTA1, SPRA1, SPTA0, and SPRA0 are reserved.

### 1.2 Addressing Timing and Memory Modes

The clock speed of an MCU with embedded flash memory is usually limited by the access time of on-chip flash memory. While in modern process technology, the CPU can operate much faster and the access time of flash memory is usually around 40 nanoseconds, which becomes a bottleneck for CPU performance. To mitigate this problem, a programmable wait state function is incorporated to allow a faster CPU clock rate to access slower embedded flash memory. The wait state is controlled by WTST register as shown in the following tables.

#### WTST (0x92) R/W (0x07)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	WTST3	WTST2	WTST1	WTST0
WR	-	-	-	-	WTST3	WTST2	WTST1	WTST0

WTST[3-0]

] Wait State Control register. WTST holds the information about Program Memory access

time				
WTST3	WTST2	WTST1	WTST0	Access Time(SYSCLK)
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	16

The default setting of the wait state control register after reset is 0x07 and the software must initialize the setting to change the wait state setting. Using an SYSCLK of 4MHz, the WTST can be set to a minimum because one clock period is 250ns, which is longer than the typical embedded flash access time. If SYSCLK is above 16MHz, then WTST should be set higher than value 1 to allow enough read access time.



#### MCON (0xC6) XRAM Relocation Register R/W (0x00) TA Protected

	7	6	5	4	3	2	1	0	
RD		MCON[7-0]							
WR		MCON[7-0]							

MCON holds the starting address of XRAM in 2KB steps. For example, if MCON[7-0] = 0x01, the starting address is 0x001000h. MCON is not meaningful in this chip because it only contains on-chip XRAM and MCON should not be modified from 0x00.

In LARGE mode, addressing is compatible with standard 8051 in 16-bit address. FLAT mode extends the program address to 20-bit and expands the stack space to 16-bit data space. The data space is always 16-bit in either LARGE or FLAT mode.

#### ACON (0x9D) R/W (0x00) TA Protected

	7	6	5	4	3	2	1	0
RD	-	-	IVECSEL	-	DPXREN	SA	AM1	AM0
WR	-	-	IVECSEL	-	DPXREN	SA	AM1	AM0

ACON is addressing mode control register.

IVECSEL	Interrupt Vector Selection
	INTVSEC=1 maps the interrupt vector to B000 space.
	INTVSEC=0 maps to normal 0x0000 space.
DPXREN	DPXR Register Control Bit.
	If DPXREN is 0, "MOVX, @Ri" instruction uses P2 (0xA0) register and XRAM Address [15-8].
	If DPXREN is 1, DPXR (0xDA) register and XRAM Address [15-8] is used.
SA	Extended Stack Address Mode Indicator. This bit is read-only.
	0 – 8051 standard stack mode where stack resides in internal 256-byte memory
	1 – Extended stack mode. The stack pointer is ESP: SP in 16-bit addressing to data space.
AM1, AM0	AM1 and AM0 Address Mode Control Bits
	00 – LARGE address mode in 16-bit
	1x – FLAT address mode with 20-bit program address

### 1.3 MOVX A, @Ri Instructions

#### DPXR (0xDA) R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	DPXR[7-0]								
WR		DPXR[7-0]							

DPXR is used to replace P2[7-0] for high byte of XRAM address bit[15-7] for "MOVX, @Ri" instructions only if DPXREN=1.

#### MXAX (0xEA) MOVX Extended Address Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		MXAX[7-0]							
WR		MXAX[7-0]							

MXAX is used to provide the top 8-bit address for "MOVX @Ri" instructions only. MXAX does not affect other MOVX instructions.

When accessing XRAM using "MOVX, @DPTR" instruction, the address of XRAM access is formed by DPHi: DPLi depending on which data pointer is selected. Another form of MOVX instruction is "MOVX, @Ri". This instruction provides an efficient programming method to move content within a 256-byte data block. In "@Ri" instruction, the XRAM address [15-7] can be derived from two sources. If ACON.DPXREN = 0, the high order address [15-8] is from P2 (0xA0), if ACON.DPXREN = 1, the high order address is from DPXR (0xDA) register.

The maximum addressing space of XRAM is up to 16MB, and thus it requires a 24-bit address. For "MOVX, @DPTR", the XRAMADDR [23-16] is from either DPX (0x93) or DPX1 (0x95) depending on which data pointer is selected. For "MOVX, @Ri", the XRAMUADDR [23-16] is from MXAX (0xEA) register.



### 1.4 Dual Data Pointers and MOVX operations

In standard 8051, there is only one data pointer DPH: DPL to perform MOVX. The enhanced CPU provides 2nd data pointer DPH1:DPL1 to speed up the move, or to copy data block. The active DPTR is selected by setting DPS (Data Pointer Select) register. Through the control of DPS, efficient programming can be achieved.

#### DPS (0x86) Data Pointer Select R/W (0x00)

	7	6	5	4	3	2	1	0
RD	ID1	ID0	TSL	-	-	-	-	SEL
WR	ID1	ID0	TSL	-	-	-	-	SEL

ID[1:0]

SEL

Define the operation of Increment Instruction of DPTR, "INC DPTR". Standard 8051 only has increment DPTR instruction. ID[1-0] changes the definitions of "INC DPTR" instruction and allows flexible modifications of DPTR when "INC DPTR" instructions is executed.

ID1	ID0	SEL=0	SEL=1
0	0	INC DPTR	INC DPTR1
0	1	DEC DPTR	INC DPTR1
1	0	INC DPTR	DEC DPTR1
1	1	DEC DPTR	DEC DPTR1

TSL Enable toggling selection of DPTR selection. When this bit is set, the selection of DPTR is toggled when DPTR is used in an instruction and executed.

DPTR selection bit. Set to select DPTR1, and clear to select DPTR. SEL is also affected by the state of ID[1:0] and TSL after DPTR is used in an instruction. When read, SEL reflects the current selection of command.

#### DPL (0x82) Data Pointer Low R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		DPL[7-0]								
WR		DPL[7-0]								

DPL register holds the low byte of data pointer, DPTR.

#### DPH (0x83) Data Pointer High R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		DPH[7-0]								
WR		DPH[7-0]								

DPH register holds the high byte of data pointer, DPTR.

#### DPL1 (0x84) Extended Data Pointer Low R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		DPL1[7-0]								
WR		DPL1[7-0]								

DPL1 register holds the low byte of extended data pointer 1, DPTR1.

#### DPH1 (0x85) Extended Data Pointer High R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		DPH1[7-0]									
WR		DPH1[7-0]									

DPH1 register holds the high byte of extended data pointer 1, DPTR1.



#### DPX (0x93) Data Pointer Top R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		DPX[7-0]								
WR		DPX[7-0]								

DPX is used to provide the top 8-bit address of DPTR for addresses above 64KB. The lower 16-bit address is formed by DPH and DPL. DPX is not affected in LARGE mode and will form a full 24-bit address in FLAT mode, meaning auto increment and decrement when DPTR is changed. DPX value has no effect if on-chip data memory is less than 64KB.

#### DPX1 (0x95) Extended Data Pointer Top R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		DPX1[7-0]								
WR		DPX1[7-0]								

DPX1 is used to provide the top 8-bit address of DPTR for addresses above 64KB. The lower 16-bit address is formed by DPH1 and DP1L. DPX1 is not affected in LARGE mode and will form a full 24-bit address in Flat mode, meaning auto increment and decrement when DPTR is changed. DPX1 value has no effect if on-chip data memory is less than 64KB.

#### 1.5 Interrupt System

The CPU implements an enhanced Interrupt Control that allows a total of 15 interrupt sources and each with two programmable priority levels. The interrupts are sampled at the rising edge of SYSCLK. If interrupts are present and enabled, the CPU enters the interrupt service routine by vectoring to the highest priority interrupt. Among the 15 interrupt sources, 7 of them are from CPU internal integrated peripherals, 6 of them are from on-chip external peripherals, and 2 of them are used for external pin interrupt expansion. When an interrupt is shared, the interrupt service routine must decide which source is requesting the interrupt by examining the corresponding interrupt flag of the sharing peripherals.

The following table shows the interrupt sources and the corresponding interrupt vectors. The Flag Reset column shows whether the corresponding interrupt flag is cleared by hardware (self-cleared) or software. The software can only clear the interrupt flag but not set the interrupt flag. The Natural Priority column shows the inherent priority if more than one interrupt is assigned to the same priority level. Please note that the interrupts assigned with higher priority levels always get serviced first compared with interrupts assigned with lower priority levels regardless of the natural priority sequence.

Interrupt	Peripheral Source Description	Vectors (*Note) IVECSEL=0/1	FLAG RESET	Natural Priority
PINT0	Expanded Pin INT0.x	0x0003/0xX003	Software	1
TF0	Timer 0	0x000B/0xX00B	Hardware	2
PINT1	Expanded Pin INT1.x	0x0013/0xX013	Software	3
TF1	Timer 1	0x001B/0xX01B	Hardware	4
INT_EUART1	EUART1	0x0023/0xX023	Software	5
TF2	Timer 2	0x002B/0xX02B	Software	6
INT_EUART2	EUART2/LIN/LIN_FAULT	0x0033/0xX033	Software	7
I2CM	I ² C Master	0x003B/0xX03B	Software	8
INT2	LVT	0x0043/0xX043	Software	9
INT3	Touch Key/ACMP	0x004B/0xX04B	Software	10
INT4	ADC	0x0053/0xX053	Software	11
WDIF	Watchdog WDT1	0x005B/0xX05B	Software	12
INT6	PWM/TCC/QE/PWM8	0x0063/0xX063	Software	13
INT7	SPI/I2C Slave	0x006B/0xX06B	Software	14
INT8	T3/T4/T5/BZ	0x0073/0xX073	Software	15
ECC	PECC/DECC/WDT2	0x007B/0xX07B	Software	0



BKP	0	Break Point	0xX080	Software	0
DBG	3	I2CS Debug	0xX0C0	Software	0

* Note: When IVECSEL=1, the interrupt vector is relocated to the top available 4KB memory space for boot code usage. Therefore, X value is based on the MCU embedded flash size like X=F, for 64K, X=B for 48K, X=7 for 32K, and X=3 for 16K Flash size. In addition to the 15 peripheral interrupts, there are two highest priority interrupts associated with debugging and breakpoint. DBG interrupt is generated when I²C slave is configured as a debug port and a debug request from the host matches the debug ID. BKP interrupt is generated when a breakpoint match condition occurs. DBG has a higher priority than BKP. The BKP and DBG interrupts are not affected by the global interrupt enable EA bit of IE register (0xA8).

The interrupt-related registers are listed in the following. Each interrupt can be individually enabled or disabled by setting or clearing the corresponding bit in IE, EXIE, and integrated peripherals' control registers.

### There needs more information to support Break Point and I2CS Debug, please contact us for both applications.

#### IE (0xA8) Interrupt Enable Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	EA	ES2	ET2	ES0	ET1	PINT1EN	ET0	PINT0EN
WR	EA	ES2	ET2	ES0	ET1	PINT1EN	ET0	PINT0EN

EΑ Global Interrupt Enable bit.

ES2 LIN-capable16550-like EUART2 Interrupt Enable bit.

ET2 Timer 2 Interrupt Enable bit.

EUART 1 Interrupt Enable bit. ES0

Timer 1 Interrupt Enable bit. ET1

PINT1EN Pin PINT1.x Interrupt Enable bit.

Timer 0 Interrupt Enable bit. ET0

Pin PINT0.x Interrupt Enable bit. **PINTOEN** 

#### EXIE (0xE8) Extended Interrupt Enable Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	EINT8	EINT7	EINT6	EWDI	EINT4	EINT3	EINT2	EI2CM
WR	EINT8	EINT7	EINT6	EWDI	EINT4	EINT3	EINT2	EI2CM

EINT8	INT8 Interrupt Enable bit.
EINT7	INT7 Interrupt Enable bit.
EINT6	INT6 Enable bit.
EWD1	Watchdog Timer Interrupt Enable bit.
EINT4	INT4 Interrupt Enable bit.
EINT3	INT3 Interrupt Enable bit.
EINT2	INT2 Interrupt Enable bit.
EI2CM	I ² C Master Interrupt Enable bit.

Each interrupt can be individually assigned to either high or low. When the corresponding bit is set to 1, it indicates it is of high priority.

#### IP (0xB8) Interrupt Priority Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	PS2	PT2	PS0	PT1	PX1	PT0	PX0
WR	-	PS2	PT2	PS0	PT1	PX1	PT0	PX0
P	S2	LIN-capabl	e 16550-like l	EUART2 Prior	rity bit.			
P	T2	Timer 2 Priority bit.						
Р	S0	EUART 1 Priority bit.						

PT1 Timer 1 Priority bit.

PX1 Pin Interrupt INT1 Priority bit.

PT0 Timer 0 Priority bit.

Pin Interrupt INT0 Priority bit. PX0



#### EXIP (0xF8) Extended Interrupt Priority Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	PINT8	PINT7	PINT6	PWDI	PINT4	PINT3	PINT2	PI2CM
WR	PINT8	PINT7	PINT6	PWDI	PINT4	PINT3	PINT2	PI2CM
P P P P	INT8 INT7 INT6 WDI INT4 INT3	INT8 Priori INT7 Priori INT6 Priori Watchdog INT4 Priori INT3 Priori	ty bit. ty bit. Priority bit. ty bit.					
	INT2 I2CM	INT2 Priority bit. I²C Master Priority bit.						

#### EXIF (0x91) Extended Interrupt Flag R/W (0x00)

	7	6	5	4	3	2	1	0
RD	INT8F	INT7F	INT6F	-	INT4F	INT3F	INT2F	I2CMIF
WR	-	-	-	-	-	-	-	I2CMIF
INT8E INT8 Elag bit		hit						

INT8F	INT8 Flag bit
INT7F	INT7 Flag bit
INT6F	INT6 Flag bit
INT4F	INT4 Interrupt Flag bit
INT3F	INT3 Flag bit
INT2F	INT2 Flag bit
I2CMIF	I ² C Master Interrupt Flag bit. This bit must be cleared by software.
Note:	Writing to INT2F to INT8F has no effect.

The interrupt flags of internal peripherals are stored in the corresponding flag registers in the peripheral and EXIF registers. These peripherals include T0, T1, T2, and WDT. Software needs to clear the corresponding flags located in the peripherals (for T0, T1, T2, and WDT). For I2CM, the interrupt flag is located in the EXIF register bit I2CMIF. This needs to be cleared by software.

INT2 to INT8 is used to connect to the external peripherals. INT2F to INT8F is the direct equivalent of the interrupt flag from the corresponding peripherals. These peripherals include Timer 3, Timer 4, Timer 5, Buzzer, SPI, I2CS, PWMx, TCC, QE, ADC, TKC3, etc.

#### WKMASK (0x9F) R/W (0xFF) Wake Up Mask Register TB Protected

	7	6	5	4	3	2	1	0
RD	WEINT8	WEINT7	WEINT6	WEINT4	WEINT3	WEINT2	WEPINT1	WEPINT0
WR	WEINT8	WEINT7	WEINT6	WEINT4	WEINT3	WEINT2	WEPINT1	WEPINT0
V V V V V V	VEINT8 VEINT7 VEINT6 VEINT4 VEINT3 VEINT2 VEPINT1 VEPINT0	Set this bit Set this bit Set this bit Set this bit Set this bit Set this bit	to allow INT7 to allow INT6 to allow INT4 to allow INT3 to allow INT2 to allow INT1	to trigger the to trigger the to trigger the to trigger the to trigger the to trigger the	wake-up of C wake-up of C	PU from STO PU from STO PU from STO PU from STO PU from STO PU from STO	P modes. P modes. P modes. P modes. P modes. P modes.	

WKMASK register defines the wakeup control of the interrupt signals from the STOP mode. The wake-up is performed by these interrupts and the internal oscillator is turned on and SYSCLK resumes if enabled. The interrupt can be set as a level trigger or an edge trigger and the wake-up always runs in accordance with the edge. The wake-up control is wired separately from the interrupt logic, and therefore, after waking up, the CPU does not necessarily enter the interrupt service routine if the corresponding interrupt is not enabled. In this case, the CPU continues onto the next instruction, which initiates the STOP mode. Extra attention should be exerted on the modes of exit and re-entry to ensure proper operation.

All clocks are stopped in STOP/SLEEP mode. Hence, the peripherals that require a clock such as Timer 3, Timer 4, Buzzer, SPI, PWMx, EUART1, ADC, and LVD cannot perform a wake-up function. Only external pins and peripherals that do not require a clock or use SOSC32KHz clock, can be used for wakeup purposes. Such peripherals are like I2CS2, LIN, WDT2, Timer 5, and TKC3



PINT0 and PINT1 are used for external GPIO pin Interrupts. All GPIO pins can be enabled to generate the PINT0 or PINT1 depending on its MFCFG register setting. Each GPIO pin also contains the rising/falling edge detections and either one or both edges can be used for interrupt triggering. The same signaling can be used for generating wake-up.

#### TCON (0x88) R/W (0x00)

	7	6	5	4	3	2	1	0
RD	TF1	TR1	TF0	TR0	PINT1F	-	<b>PINT0F</b>	-
WR	-	TR1	-	TR0	PINT1F	-	<b>PINT0F</b>	-
TF1Timer 1 Interrupt Flag bit. TF1 is cleared by hardware when entering the interruptTR1Timer 1 Run Control bit. Set to enable Timer 1.TF0Timer 0 Interrupt Flag. TF0 is cleared by hardware when entering the interrupt roTR0Timer 0 Run Control bit. Set to enable Timer 0.PINT1FPin INT1 Interrupt Flag bit. PINT1F is cleared by hardware when entering the interrupt flag bit.						routine.		
Р	INTOF	routine. Pin INT0 Ir routine.	iterrupt Flag b	it. PINT0F is	cleared by ha	rdware when	entering the ir	nterrupt

#### 1.6 Register Access Control

One important aspect of the embedded MCU is its reliable operations in a harsh environment. Many system failures result from the accidental loss of data or changes of critical registers that may lead to catastrophic effects. The CPU provides several protection mechanisms, which are described in this section.

#### TA (0xC7) Time Access Control Register A R/W (xxxxxx0)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	-	-	-	TASTAT
WR	TA Register							

TA access control emulates a ticket that must be purchased before modifying a critical register. To modify or write into a TA protected register, TA must be accessed in a predefined sequence to obtain the ticket. The ticket is used when an intended modification operation is done to the TA protected register. To obtain the next access a new ticket must be obtained again by performing the same predefined sequence on TA. TA does not limit the read access of the TA protect registers. The TA protected register includes RWT bit of WDCON (0xD8), MCON (0xC6), and ACON (0x9D) registers. The following predefined sequence is required to modify the content of MCON.

MOV TA, #0xAA;

MOV TA, #0x55;

MOV MCON, #0x01;

Once the access is granted, there is no time limitation of the access. The access is voided if any operation is performed in TA address. When read, TASTAT indicates whether TA is locked or not (1 indicates "unlock" and 0 indicates "lock").

#### TB (0xC9) Time Access Control Register B R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	-	-	-	TBSTAT
WR	TB Register							

TB access control functions are like TA control, except the ticket is for multiple uses with a time limit. Once access is granted, the access is open for 256 clock periods and then expires. The software can also read TB address to obtain the current TB status. The TB protected registers are marked on the register names and descriptions. To modify registers with TB protection, the following procedure must be performed.

MOV TB, #0xAA

MOV TB, #0x55

This action creates a timed window of 256 SYSCLK periods to allow write access to these TB protected registers. If any above-mentioned sequences are repeated before the 128 cycles expire, a new 128-cycle is extended. The current 256 cycles can be terminated immediately by writing #0x00 to TB registers, such as

#### MOV TB, #0x00

It is recommended to terminate the TB access window once the user program finishes the modifications of TB



protected registers.

Because TA and TB are critical reassurance of the reliable operation of the MCU that prevents accidental hazardous uncontrollable modifications of critical registers, the operation of these two registers should bear extreme cautions. It is strongly advised that these two registers should be turned on only when needed. Both registers use a synchronous CPU clock, and therefore it is imperative that any running tasks of TA and TB should be terminated before entering IDLE mode or STOP mode. Both modes turn off the CPU clock and, if TA and TB are enabled, they stay enabled until the CPU clock resumes, and thus may create vulnerabilities for critical registers.

Another reliability concern of embedded Flash MCU is that the important content in the Flash can be accidentally erased. This concern is addressed by the content protection in the Flash controller.

#### 1.7 Clock Control and Power Management Modes

This section describes the clock control and power-saving modes of the CPU and its integrated peripherals. The settings are controlled by PCON (0x87) and PMR (0xC4) registers. The register description is defined as follows.

#### PCON (0x87) R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	SMOD0	-	-	-	-	-	-	-	
WR	SMOD0	-	-	-	-	SLEEP	STOP	IDLE	
	SMOD0	<ul> <li>UART 0 Baud Rate Control. This is used to select double baud rate in mode 1, 2 or 3 for UART 0 using Timer 1 overflow. This definition is the same as standard 8051. SMOD0 is reserved because UART 0 is not supported in this chip.</li> <li>Sleep Mode Control Bit. When this bit and the Stop bit are set to 1, the clock of the CPU all peripherals is disabled and enters SLEEP mode. The SLEEP mode exits when non-clocked interrupts or resets occur. Upon exiting SLEEP mode, Sleep bit and Stop bit in PCON is automatically cleared. In terms of power consumption, the following relationshi applies: IDLE mode &gt; STOP mode &gt; SLEEP mode. SLEEP mode is the same as STOP mode, except it also turns off the band gap and the regulator. It uses a very low power backup regulator (&lt; 5uA). When waking up from SLEEP mode, it takes a longer time (&lt; 0 IOSC clock cycles, compared with STOP mode) because the regulator requires more tim to stabilize.</li> <li>Stop Mode Control Bit. The clock of the CPU and all peripherals is disabled and enters</li> </ul>							
S	STOP	STOP mod	e if the Sleep d interrupts o	bit is in the re	eset state. The	e STOP mode	is disabled an e can only be t stop bit in PCC	erminated by	
IDLE Idle Bit. If the IDLE bit is set, the system goes into IDLE mode. In Idle mode, CPU clo becomes inactive and the CPU and its integrated peripherals such as WDT1, and T0, are reset. But the clocks of CPU and external peripherals like T3/T4/T5, PWMx, ADC EUART1, LIN-capable16550-like EUART2, SPI, I ² C slave, WDT2, WDT3, and the oth are still active. This allows the interrupts generated by these peripherals and external interrupts to wake up the CPU. The exit mechanism of IDLE mode is the same as ST mode. Idle bit is automatically cleared at the exit of the IDLE mode.							nd T0/T1/T2 x, ADC, the others tternal		

#### PMR (0xC4) R/W (010xxxxx)

	7	6	5	4	3	2	1	0	
RD	CD1=0	CD0	SWB	-	-	-	-	-	
WR	-	CD0	SWB	-	-	-	-	-	
С	:D1, CD0	Clock Divider Control. These two bits control the entry of PMM mode. When CD0=1, and CD1=0, full-speed operation is in effect. When CD0=1, and CD1=1, the CPU enters PMM mode where the CPU and its integrated peripherals operate at a clock rate divided by 257. Note that in PMM mode, all integrated peripherals such as UART0, LIN-capable 16550-like EUART2, WDT, and T0/T1/T2 run at this reduced rate, and thus may not function properly. All external peripherals to the CPU still operate at full speed in PMM mode.							
NOTE:CD1 is internally hardwired to 0. This bit is not supported in PMM mode.SWBSwitch Back Control bit. Setting this bit allows the actions to occur in integrated per to automatically switch back to the normal operation mode.							ed peripherals		
NOTE: This function is not supported in PMM mode.									



CKSEL (0x8F) System Clock Selection Register R/W (0x0C) TB Protected

	7	6	5	4	3	2	1	0
RD		IOSCD	0IV[3-0]		-	-	CLKSEL[1]	CLKSEL[0]
WR		IOSCD	0IV[3-0]		REGRDY[1]	REGRDY[0]	CLKSEL[1]	CLKSEL[0]

IOSCDIV[3-0] IOSC Pre-Divider. Default is IOSC/32.

SC Pre-Divider. Delauit is ic	JSC/32.			
IOSCDIV[3-0]	SYSCLK			
0	IOSC			
1	IOSC/2			
2	IOSC/4			
3	IOSC/6			
4	IOSC/8			
5	IOSC/10			
6	IOSC/12			
7	IOSC/14			
8	IOSC/16			
9	IOSC/32			
10	IOSC/64			
11	IOSC/128			
12	IOSC/256			
13	IOSC/256			
14	IOSC/256			
15	IOSC/256			

#### REGRDY[1-0]

Wake up delay time for main regulator stable time from reset or from sleep mode wakeup. Default is the longest delay at 256 SOSC32KHz.

	REGRDY[1]	REGRDY[0]	Delay time						
	0	0	8 SOSC32KHz cycle						
	0	1	16 SOSC32KHz cycle						
	1	0	64 SOSC32KHz cycle						
	1	1	256 SOSC32KHz cycle						
Clo	lock Source Selection								

#### CLKSEL[1-0]

These two bits define the clock source of the system clock SYSCLK. The selections are shown in the following table. The default setting after reset is IOSC.

CLKSEL[1]	CLKSEL[0]	SYSCLK
0	0	IOSC (through divider)
0	1	SOSC32KHz
1	0	IOSC (through divider)
1	1	XCLKIN

#### WKMASK (0x9F) Wake-Up Mask Register R/W (0xFF) TB Protected

	7	6	5	4	3	2	1	0
RD	WEINT8	WEINT7	WEINT6	WEINT4	WEINT3	WEINT2	WEPINT1	WEPINT0
WR	WEINT8	WEINT7	WEINT6	WEINT4	WEINT3	WEINT2	WEPINT1	WEPINT0
WEINT8 Set this bit to allow INT8 to trigger the wake-up of CPU from STOP modes.								
=	WEINT7 Set this bit to allow INT7 to trigger the wake-up of CPU from STOP modes. WEINT6 Set this bit to allow INT6 to trigger the wake-up of CPU from STOP modes.							
WEINT4 Set this bit to allow INT4 to trigger the wake-up of CPU from STOP modes.								
WEINT3 Set this bit to allow INT3 to trigger the wake-up of CPU from STOP modes.								



WEPINT1

WEPINT0

Set this bit to allow INT2 to trigger the wake-up of CPU from STOP modes. Set this bit to allow INT1 to trigger the wake-up of CPU from STOP modes. Set this bit to allow INT0 to trigger the wake-up of CPU from STOP modes.

WKMASK register defines the wake-up control of the interrupt signals from the STOP/SLEEP mode. The wake-up is performed by these interrupts and the internal oscillator is turned on and SYSCLK resumes if enabled. The interrupt can be set as a level trigger or an edge trigger and the wake-up always runs in accordance with the edge. The wake-up control is wired separately from the interrupt logic, and therefore after waking up, the CPU does not necessarily enter the interrupt service routine if the corresponding interrupt is not enabled. In this case, the CPU continues onto the next instruction, which initiates the STOP/SLEEP mode. Extra attention should be taken to designing the exit and re-entry of modes to ensure proper operation.

All clocks are stopped in STOP or SLEEP modes, and therefore peripherals such as I²C slave, UARTx, ADC, LVD, and T3/T4, require clocks that cannot perform a wake-up function. Only external pins and peripherals that do not require a clock can be used for wake-up purposes. Such peripherals are TKC3, LIN Wakeup and Timer5 with SOSC32KHz.

#### IDLE Mode

IDLE mode provides power saving by stopping SYSCLK to CPU and its integrated peripherals while other peripherals are still in operation with SYSCLK. Hence other peripherals still function normally and can generate interrupts that wake up the CPU from IDLE mode. The IDLE mode is enabled by setting IDLE bit to 1.

When the CPU is in idle mode, there is no processing. All integrated internal peripherals such as T0/T1/T2, and I²C Master are inaccessible during idle mode. The IDLE mode can be exited by hardware reset or by external interrupts as well as the interrupts from external peripherals that are OR-ed with the external interrupts. The triggering external interrupts need to be enabled properly. Upon exiting from IDLE mode, the CPU resumes operation as the clock is being turned on. CPU immediately vectors to the interrupt service routine of the corresponding interrupt sources that wake up the CPU. When the interrupt service routine completes, RETI returns to the program and immediately follows the one that invokes the IDLE mode. Upon returning from IDLE mode to normal mode, idle bit in PCON is automatically cleared.

#### STOP Mode

STOP mode provides further power reduction by stopping SYSCLK to all circuits. In STOP mode, IOSC oscillator is disabled. STOP mode is entered by setting STOP = 1. To achieve minimum power consumption, it is essential to turn off all peripherals with DC current consumption. It is also important that the software switches to the IOSC clock and disables all other clock generators before entering STOP mode. It is critical to ensure a smooth transition when resuming back to its normal operations. Upon entering STOP mode, the system uses the last edge of IOSC clock to shut down the IOSC clock generator.

Valid interrupt/wakeup event or reset will result in the exit of STOP mode. Upon exit, STOP bit is cleared by hardware and IOSC is resumed. The triggering interrupt source must be enabled and its Wake-up bit is set in the WKMASK register. As CPU resumes, the normal operation applies the previous clock settings. When an interrupt occurs, the CPU vectors to the interrupting service routine of the corresponding interrupt source. When the interrupt service routine completes, RETI returns to the program to execute the instruction that invokes the STOP mode.

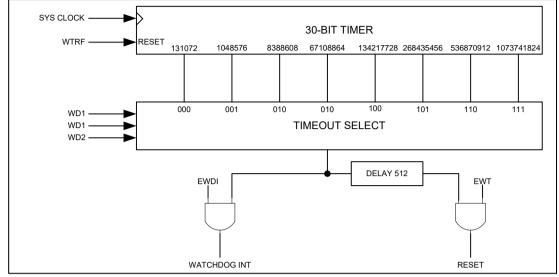
The on-chip 1.5V regulator for core circuits is still enabled along with its reference voltage. As the result, the power consumption due to the regulator and its reference circuit is still around 500uA. The advantage of STOP mode is its immediate resumption of the CPU.

#### SLEEP Mode

SLEEP mode achieves very low standby consumption by putting the on-chip 1.5V regulator in the disabled state. An ultra-low-power backup regulator (typical 1.42V) supplies the internal core circuit and maintains the logic state and SRAM data. The total current drain in SLEEP mode is less than 1.5uA. Only the backup regulator and the SOSC32KHz circuit are still in operation in SLEEP mode.

The exit of SLEEP mode is the same interrupt/wakeup event as in STOP mode, and, in addition, the on-chip regulator is enabled. SYSCLK is resumed after a delay set by REGRDY (clocked by SOSC32KHz). REGRDY delay is necessary to ensure the stable operation of the regulator. The larger the decoupling capacitance, the longer delay should be set.

#### **Clock Control**


The clock selection is defined by CKSEL register (0x8F). There are three selections from divided IOSC, SOSC32KHz, and XCLKIN. The default selection is divided IOSC. The typical power consumption of CPU is 0.3mA/MHZ.

### 1.8 Watchdog Timer

The Watchdog Timer is a 30-bit timer that can be used by a system supervisor or as an event timer. The Watchdog timer can be used to generate an interrupt or to issue a system reset depending on the control settings.



This section describes the register related to the operation of Watchdog Timer and its functions. The following diagram shows the structure of the Watchdog Timer. WDT shares the same clock with the CPU, and thus WDT is disabled in IDLE mode or STOP mode. However, it runs at a reduced rate in PMM mode.



#### WDCON (0xD8) WDT1 Interrupt Flag Register R/W (0x02) TA Protected only for bit 0 RWT

	-	-				-			
	7	6	5	4	3	2	1	0	
RD	-	-	-	-	WDIF	WTRF	EWT	-	
WR	-	-	-	-	WDIF	WTRF	EWT	RWT	
	/DIF /TRF	<ul> <li>WDT Interrupt Flag bit. This bit is set when the session expires regardless of a WDT1 interrupt is enabled or not. WDT1 interrupt enable control is located in EXIE (0xE8).4 EWDI bit. It must be cleared by software.</li> <li>WDT1 Reset Flag bit. WDRF is cleared by hardware reset including RSTN, POR, etc.</li> <li>WTRF is set to 1 after a WDT1 reset occurs. It can be cleared by software. WTRF can be used by software to determine if a WDT1 reset has occurred.</li> </ul>							
E	WT	Watchdog Timer Reset Enable bit. Set this bit to enable the watchdog reset function. The default WDT1 reset is enabled and the WDT1 timeout is set to maximum.							
R	WT	Reset the Watchdog timer. Writing 1 to RWT resets the WDT1 timer. RWT bit is not a register and does not hold any value. The clearing action of the Watchdog timer is protected by TA access. In another word, to clear Watchdog timer, TA must be unlocked and then write RWT bit to 1. If TA is still locked, the program can write 1 into RWT bit, but does not reset the Watchdog timer.							

### CKCON (0x8E) Clock Control and WDT1 R/W (0xC7)

CKCON (	UX8E) CIOCK	Control and V		KCON (UX8E) Clock Control and WD11 R/W (UXC7)											
	7	6	5	4	3	2	1	0							
RD	WD1	WD0	T2CKDCTL	T1CKDCTL	T0CKDCTL	WD2	-	-							
WR	WD1	WD0	T2CKDCTL	T1CKDCTL	T0CKDCTL	WD2	-	-							
	<ul> <li>T2CKDCTL Timer 2 Clock Source Division Factor Control Flag. Setting this bit to 1 sets the Timer 2 division factor to 4, and the Timer 2 clock frequency equals CPU clock frequency divided by 4. Setting this bit to 0 (the default power-on value) sets the Timer 2 division factor to 12, the Timer 2 clock frequency equals CPU clock frequency divided by 12.</li> <li>T1CKDCTL Timer 1 Clock Source Division Factor Control Flag. Setting this bit 1 sets the Timer 1 division factor to 4, and the Timer 1 clock frequency equals CPU clock frequency equals CPU clock frequency divided by 4. Setting this bit to 0 (the default power-on value) sets the Timer 1 division factor to 12, and the Timer 1 clock frequency equals CPU clock frequency divided by 4. Setting this bit to 0 (the default power-on value) sets the Timer 1 division factor to 12, and the Timer 1 clock frequency equals CPU clock frequency divided by 12.</li> </ul>														
Т	OCKDCTL	factor to 4, Setting this	Timer 0 Clock Source Division Factor Control Flag. Setting this bit1 sets the Timer 0 division factor to 4, and the Timer 0 clock frequency equals CPU clock frequency divided by 4. Setting this bit0 (the default power-on value) sets the Timer 0 division factor equals 12, and the Timer 0 clock frequency equals CPU clock frequency divided by 12.												
V	VD[2-0]	the Timer 0 clock frequency equals CPU clock frequency divided by 12. This register controls the timeout value of WDT1 as the following table. The timeout value is shown as following table and the default is set to maximum:													
		WD2	WD1	WD0	Timeo	ut Value									



0	0	0	131072
0	0	1	1048576
0	1	0	8388608
0	1	1	67108864
1	0	0	134217728
1	0	1	268435456
1	1	0	536870912
1	1	1	1073741824

A second 16-bit Watchdog Timer (WDT2) clocked by the independent nonstop SOSC32KHz is included. WDT2 can be used to generate interrupt/wakeup timing from STOP/SLEEP mode, or generate software reset.

#### WDT2CF (0xA0D8h) Watchdog Timer 2 Configure Registers R/W (0x00) TB Protected

	7	6	5	4	3	2	1	0			
RD	-	WDT2REN	WDT2RF	WDT2IEN		WDT2CS[2-0]		WDT2IF			
WR	WDT2CLR	WDT2REN	WDT2RF	WDT2IEN		WDT2CS[2-0]		WDT2IF			
V	/DT2CLR	WDT2 Cou	nter Clear								
		-		clears the WE	T2 count to 0	). It is self-clea	ared by hardw	are.			
V	/DT2REN	WDT2 Res									
			•	WDT2 to per	orm a softwa	re reset.					
V	/DT2RF	WDT2 Res	0		. –			" <b>O</b> "			
1.4				er a WDT2 res	et occurs. The	nis must be cle	eared by writin	ıg "0".			
V	/DT2IEN		WDT2 Interrupt Enable WDT2IEN=1 enables WDT2 interrupt.								
١٨	/DT2CS[2-0]	WDT2IEN=		Ji z interrupt.							
v		WDT2 Cloc		ock SOSC32KH	z Divider	WDT	2Period				
		00		2^8			nsec				
		00	1	2^9		16	msec				
		01	)	2^10		32	msec				
		01	1	2^11		64	msec				
		10	)	2^12		128	msec				
		10	1	2^13		256	msec				
		11	)	2^14		512	msec				
		111 2^15 1024 msec									
V	/DT2IF	WDT2 Inter	rupt Flag								

WDT2IF is set to "1" after a WDT2 interrupt. This must be cleared by writing "0".

Please note that the longest effective time WDT2 can be set is approximately 18 hours.

#### WDT2L (0xA0D9h) Watchdog Timer 2 Time Out Value Low Byte RW (0xFF) TB Protected

	7	6	5	4	3	2	1	0			
RD		WDT2CNT[7-0]									
WR		WDT2[7-0]									

#### WDT2H (0xA0DAh) Watchdog Timer 2 Time Out Value High Byte RW (0x0F) TB Protected

	7	6	5	4	3	2	1	0			
RD		WDT2CNT[15-8]									
WR		WDT2[15-8]									

WDT2L and WDT2H hold the timeout value for watchdog timer 2. When the counter reaches WDT2 timeout value, an interrupt or reset is generated. Reading this register returns the current count value.

A third Watchdog Timer (WDT3) is also included for further enhancement of fault recovery. WDT3 cannot be disabled in normal mode. It can be disabled only in SLEEP mode if SLEEPDIS[2-0] = 3'b101. WDT3 is clocked 4 times slower than WDT2, and is also set by WDT2CS[2-0].

WDT2CS[2-0] Clock SOSC32KHz Divider WDT3 Period



000	2^12	32 msec
001	2^13	64 msec
010	2^14	128 msec
011	2^15	256 msec
100	2^16	512 msec
101	2^17	1024 msec
110	2^18	2048 msec
111	2^19	4096 msec

Therefore, the longest time of WDT3 is about 72 hours (4 seconds times 2^16).

#### WDT3CF (0xA0DBh) Watchdog Timer 3 Configure Registers R/W (0xD1) TB Protected

01001												
	7	6	6 5 4		3	2	1	0				
RD	-	S	SLEEPDIS[2-0	)]			WDT3RF					
WR	WDT3CLR	S	SLEEPDIS[2-0	)]			WDT3RF					
WDT3CLR WDT3 Counter Clear Writing "1" to WDT3CLR clears the WDT3 count to 0. It is self-cleared by hardware. SI EEPDISI2-01 Stop WDT3 increment in STOP/SI EEP mode												
	SLEEPDIS[2-0]       Stop WDT3 increment in STOP/SLEEP mode         SLEEPDIS[2-0] = 3b'101 stops WDT3 in STOP/SLEEP mode.         WDT3RF       WDT3 Reset Flag         WDT3RF is set to "1" after a WDT3 reset occurs. This must be cleared by writing "0".											
								-				

#### WDT3L (0xA0DCh) Watchdog Timer 3 Timeout Value Low Byte R/W (0x3F) TB Protected

	7	6	5	4	3	2	1	0			
RD		WDT3CNT[7-0]									
WR		WDT3[7-0]									

#### WDT3H (0xA0DDh) Watchdog Timer 3 Timeout Value High Byte R/W (0x00) TB Protected

	7	6	5		4	3	2	1					
RD			WDT3CNT[15-8]										
WR			WDT3[15-8]										

WDT3L and WDT3H hold the timeout value for watchdog timer 3. When the counter reaches the WDT3 timeout value, a reset is generated. Reading this register returns the current count value.

#### 1.9 System Timers – T0 and T1

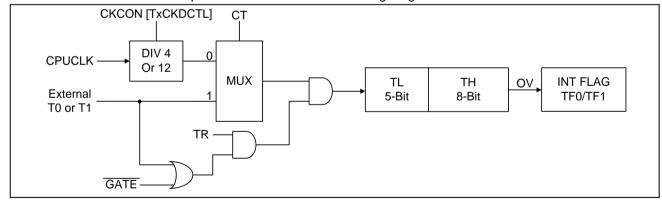
The CPU contains three 16-bit timers/counters, Timer 0, Timer 1, and Timer 2. In timer mode, Timer 0, and Timer 1 registers are incremented every 12 SYSCLK periods when the appropriate timer is enabled. In the timer mode, Timer 2 registers are incremented every 12 or 2 SYSCLK periods (depending on the operating mode). In the counter mode, the timer registers are incremented every falling edge on their corresponding inputs: T0, T1, and T2. These inputs are read every SYSCLK period.

Timer 0 and Timer 1 are fully compatible with the standard 8051. Timer 0 and 1 are controlled by TCON (0x88) and TMOD (0x89) registers while each timer consists of two 8-bit registers TH0 (0x8C), TL0 (0x8A), TH1 (0x8D), TL1 (0x8B).

#### TCON (0x88) R/W (0x00)

		,								
	7	6	5	4	3	2	1	0		
RD	TF1	TR1	TF0	TR0	PINT1F	-	<b>PINT0F</b>	-		
WR	-	TR1	-	TR0	PINT1F	-	<b>PINT0F</b>	-		
TF1 Timer 1 Interrupt Flag bit. TF1 is cleared by hardware when entering the interrupt routine.										
TR1		Timer 1 Run Control bit. Set to enable Timer 1.								
T	F0	Timer 0 Interrupt Flag. TF0 is cleared by hardware when entering the interrupt routine.								
T	R0	Timer 0 Run Control bit. Set to enable Timer 0.								
PINT1F		Pin INT1 Ir routine.	terrupt Flag b	it. PINT1F is	cleared by ha	rdware when	entering the ir	nterrupt		

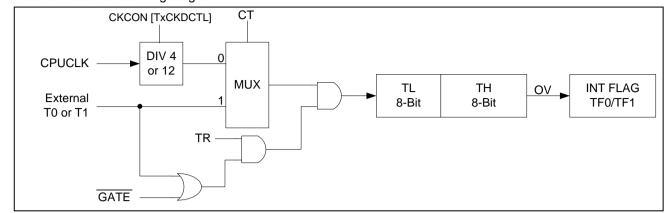



PINTOF Pin INTO Interrupt Flag bit. PINTOF is cleared by hardware when entering the interrupt routine.

	7	6		5	4	3	2	1	0
RD	GATE1	CT1	Т	1M1	T1M0	GATE0	CT0	T0M1	T0M0
WR	GATE1	CT1	Т	1M1	T1M0	GATE0	CT0	T0M1	T0M0
C T G C T	ATE1 T1 1M1 1M0 ATE0 T0 0M1 0M0	Counter o CT1 to us Timer 1 M Timer 1 M Timer 0 G	r Time e inter ode So ode So ate Co r Time ernal cl ode So	r Mode nal clock elect bit elect bit ntrol bit. r Mode S lock. elect bit	Select bit. Se «. Set to enable	t CT1 to acce e external T0 t	ss external T	1 as the clock gating control	of the counter. source. Clear of the counter. ce. Clear CT0
		M1	MO	Mode		Μ	ode Descriptio	ons	
		0	0	0		as a 5-bit pre-s er. They form			an 8-bit
		0	1	1	TH and TL	are cascaded	to form a 16-	bit counter/tim	ner.
		1	0	2	TL functions	s as an 8-bit c	ounter/timer a	and auto-reloa	ds from TH.
		1	1	3	timer, which configured i	s as an 8-bit c n is controlled in Mode 3. Wh e its interrupt is	by GATE1. O nen this happe	nly Timer 0 ca ens, Timer 1 c	an be

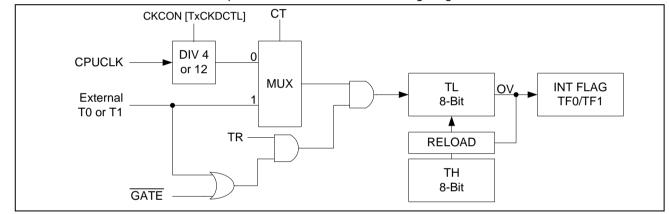
#### TMOD (0x89h) Timer 0 and 1 Mode Control Register R/W (0x00)

#### Mode 0


In this mode, TL serves as a 5-bit pre-scaler and TH functions as an 8-bit counter/timer, and both work together as a 13-bit counter/timer. The Mode 0 operation is shown in the following diagram.

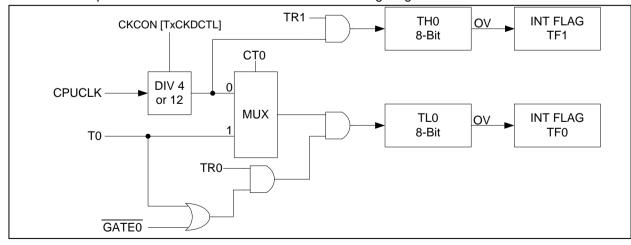





### Mode 1

Mode 1 operates the same way as Mode 0 does, except TL is configured as 8-bit, and thus forms a 16-bit counter/timer. This is shown as the following diagram.




#### Mode 2

Mode 2 configures the timer as an 8-bit re-loadable counter. The counter is TL while TH stores the reload data. The reload occurs when TL overflows. The operation is shown in the following diagram.



#### Mode 3

Mode 3 is a special mode for Timer 0 only. In this mode, Timer 0 is configured as two separate 8-bit counters. TL0 uses the control and interrupt flags of Timer 0, whereas TH0 uses the control and interrupt flag of Timer 1. Since Timer 1's control and flag are occupied, Timer 2 can only be used for counting purposes such as Baud rate generation while Timer 0 is in Mode 3. The operation flow of Mode 3 is shown in the following diagram.





### TL0 (0x8Ah) Timer 0 Low Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		TL0[7-0]								
WR		TL0[7-0]								

#### TH0 (0x8Ch) Timer 0 High Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		TH0[7-0]								
WR		TH0[7-0]								

#### TL1 (0x8Bh) Timer 1 Low Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		TL1[7-0]								
WR		TL1[7-0]								

#### TH1 (0x8Dh) Timer 1 High Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	TH1[7-0]									
WR		TH1[7-0]								

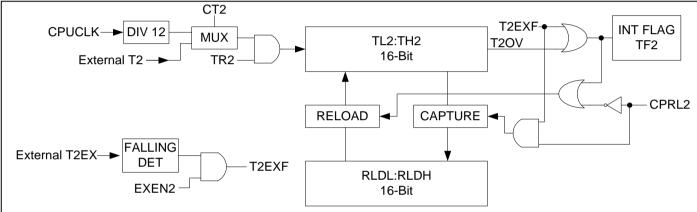
### 1.10 System Timer – T2

Timer 2 is fully compatible with the standard 8052 timer 2. Timer 2 can be used as the re-loadable counter, capture timer, or baud rate generator. Timer 2 uses five SFR as counter registers, capture registers, and a control register.

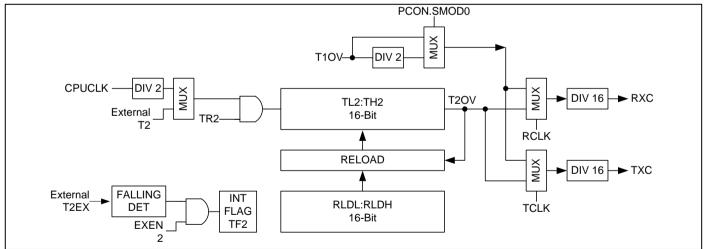
#### T2CON (0xC8h) Timer 2 Control and Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2	CPRL2		
WR	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2	CPRL2		
Т	F2	Timer 2 Int	errupt Flag bi	t	•					
					is not set whe	en RCLK or TC	CLK is set (tha	at means Tin		
				aud rate gene	erator).					
E	XF2		ng Edge Flag							
			set when T2	EX has a fal	ling edge whe	en EXEN2=1.	EXF2 must	be cleared		
_	<b>.</b>	software.								
R	CLK	Receive Clock Enable bit								
				•	ner 2 overflow	•				
_					ner 1 overflow	pulses.				
Т	CLK		lock Enable b							
					Fimer 2 overflo					
_				,	Timer 1 overflo	ow pulses.				
E	XEN2		tion Enable b							
			•		falling edge a	appears.				
_		0	T2EX events							
Т	R2	•	Timer 2 Cont	rol bit						
		1 – Start								
~	To	0 – Stop			•.					
C	T2	-		Node Select b						
				•	n as the clock	source.				
~		• • • • • • • • • • • • • • • • • • • •	l clock timer r							
С	PRL2	•	eload Select k							
		<ol> <li>Use T2EX pin falling edge for capture.</li> <li>Automatic reload on Timer 2 overflow or falling edge of T2EX (when EXEN2=1). If RCLI</li> </ol>								
			·		aud rate gene	rator), this bit	is ignored an	a an automa		
		reioad is to	iced on time	er 2 overflows.						




Note: UART0 is not implemented in CS8977.

Timer 2 can be configured in three modes of operations –Auto-reload Counter, Capture Timer, and Baud Rate Generator. These modes are defined by RCLK, TCLK, CPRL2 and TR2 bits of T2CON registers. The definition is illustrated in the following table:


RCLK or TCLK	CPRL2	TR2	Mode Descriptions
0	0	1	16-bit Auto-reload Counter mode. Timer 2 overflow sets the TF2 interrupt flag and TH2/TL2 is reloaded with RLDH/RLHL register.
0	1	1	16-bit Capture Timer mode. Timer 2's overflow sets TF2 interrupt flag. When EXEN2=1, TH2/TL2 content is captured into RLDH/RLDL when T2EX falling edge occurs.
1	x	1	Baud Rate Generator mode. Timer 2's overflow is used for configuring UART0.
Х	Х	0	Timer 2 is stopped.

The block diagram of the Timer 2 operating in Auto-reload Counter and Capture Timer modes are shown in the following diagram:

External T2 and External T2EX are tied together in this device.



The block diagram of the Timer 2 operating in Baud Rate Generator is shown in the following diagram:



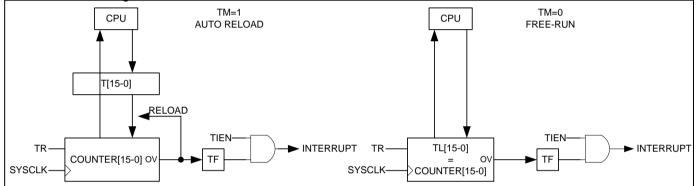
### TL2 (0xCCh) Timer 2 Low Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		TL2[7-0]									
WR		TL2[7-0]									

#### TH2 (0xCDh) Timer 2 High Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		TH2[7-0]								
WR		TH2[7-0]								




RI	_DL (0x	CAh) Timer 2	2 reload Low	Byte Registe	er R/W (0x00)						
		7	6	5	4	3	2	1	0		
	RD		RLDL[7-0]								
	WR				RLDI	_[7-0]					

#### RLDH (0xCBh) Timer 2 reload High Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		RLDH[7-0]								
WR		RLDH[7-0]								

### 1.11 System Timer – T3 and T4

Both Timer 3 and Timer 4 are simple 16-Bit reload timers or free-run counters and are clocked by the system <u>clock</u>. The block diagram is shown below.



#### T34CON (0xCFh) Timer 3 and Timer 4 Control and Status Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	TF4	TM4	TR4	T4IEN	TF3	TM3	TR3	T3IEN
WR	TF4	TM4	TR4	T4IEN	TF3	TM3	TR3	T3IEN

TF4	Timer 4 Overflow Interrupt Flag bit
	TF4 is set by hardware when an overflow condition occurs. TF4 must be cleared by software.
TM4	Timer 4 Mode Control bit. TM4=1 sets timer 4 as auto-reload, and TM4=0 sets timer 4 as free-run.
TR4	Timer 4 Run Control bit. Set to enable Timer 4, and clear to stop Timer 4.
T4IEN	Timer 4 Interrupt Enable bit
	T4IEN=0 disables the Timer 4 overflow interrupt.
	T4IEN=1 enables the Timer 4 overflow interrupt.
TF3	Timer 3 Overflow Interrupt Flag bit
	TF3 is set by hardware when an overflow condition occurs. TF3 must be cleared by software.
TM3	Timer 3 Mode Control bit. TM3=1 sets timer 3 as auto-reload, and TM3=0 sets timer 3 as free-run.
TR3	Timer 3 Run Control bit. Set to enable Timer 3, and clear to stop Timer 3.
T3IEN	Timer 3 Interrupt Enable bit.
	T3IEN=0 disables the Timer 3 overflow interrupt
	T3IEN=1 enables the Timer 3 overflow interrupt

#### TL3 (0xAEh) Timer 3 Low Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	T3[7-0]								
WR	T3[7-0]								

#### TH3 (0xAFh) Timer 3 High Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	T3[15-8]							

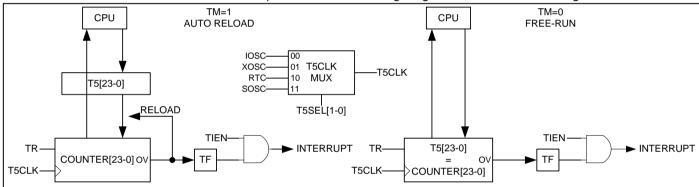


WR

T3[15-8]

#### TL4 (0xACh) Timer 4 Low Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	T4[7-0]										
WR	T4[7-0]										


#### TH4 (0xADh) Timer 4 High Byte Register R/W (0x00)

,		<u> </u>	<u> </u>	-					
	7	6	5	4	3	2	1	0	
RD	T4[15-8]								
WR	T4[15-8]								

T3[15-0] and T4[15-0] function differently when both are read or written. When written in auto-reload mode, its reload value is written. In free-run mode, the counter value is written immediately. When read, the return value is always the present counter value. There is no snapshot buffer in the read operation, so software should always read the high byte and then the low byte.

#### 1.12 System Timer – T5

T5 is a 24-Bit simple timer. It can select four different clock sources and can be used for extended sleep mode wake-up. The clock sources include IOSC, XOSC, RTC, and SOSC32KHz. T5 can be configured either as a free-run mode or auto-reload mode. Timer 5 does not depend on the SYSCLK, and therefore it continues to count under STOP or SLEEP mode if the clock source is present. The following diagram shows the block diagram of Timer 5.



#### T5CON (0xA068h) Timer 5 Control and Status Register (0x00)

	7	6	5	4	3	2	1	0
RD	TF5	T5SEL[1]	T5SEL[0]	TM5	TR5	-	-	T5IEN
WR	TF5	T5SEL[1]	T5SEL[0]	TM5	TR5	-	-	T5IEN
TEE Timer 5 Overflow Interrupt Flog hit								

TF5	Timer 5 Overflow Interrupt Flag bit
	TF5 is set by hardware when overflow condition occurs. TF5 must be cleared by software.
T5SEL[1-0]	Timer 5 Clock Selection bits
	T5SEL[1-0] = 00, IOSC
	T5SEL[1-0] = 01, IOSC
	T5SEL[1-0] = 10, SOSC32KHz
	T5SEL[1-0] = 11, SOSC32KHz
TM5	Timer 5 Mode Control bit. TM5=1 sets timer 5 as auto reload, and TM5=0 sets timer 5 as free-run.
TR5	Timer 5 Run Control bit. Set to enable Timer 5, and clear to stop Timer 5.
T5IEN	Timer 5 Interrupt Enable bit
	T5IEN=0 disables the Timer 5 overflow interrupt.
	T5IEN=1 enables the Timer 5 overflow interrupt.

#### TL5 (0xA069) Timer5 Low Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	T5[7-0]								
WR	T5[7-0]								



### TH5 (0xA06A) Timer5 Medium Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	T5[15-8]							
WR	T5[15-8]]							

#### TT5 (0xA06B) Timer5 High Byte Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	T5[23-16]							
WR	T5[23-16]							

T5[23-0] functions differently when being read or written. When written in auto-reload mode, its reload value is written, and in free-run mode, the counter value is written immediately. When read, the return value is always the present counter value. There is no snapshot buffer in the read operation, so software should always read the high byte and then the low byte.

### 1.13 Multiplication and Division Unit (MDU)

MDU provides acceleration on unsigned integer operations of 16-bit multiplications, 32-bit division, and shifting and normalizing operations. The following table shows the execution characteristics of these operations. The MDU does not contain the operation completion status flag. Therefore, the most efficient utilization of MDU uses NOP delay for the required clock time of the MDU operation types. The number of the clock cycles required for each operation is shown in the following table and it is counted from the last write of the writing sequence.

Operations	Result	Reminder	# of Clock Cycle
32-bit division by 16-bit	32-bit	16-bit	17
16-bit division by 16-bit	16-bit	16-bit	9
16-bit multiplication by 16-bit	32-bit	-	10
32-bit normalization	-	-	3 – 20
32-bit shift left/right	-	-	3 – 18

The MDU is accessed through MD0 to MD5 which contains the operands and the results, and the operation is controlled by ARCON register.

#### ARCON (0xFF) MDU Control R/W (0x00)

	7	6	5	4	3	2	1	0
RD	MDEF	MDOV SLR		SC4	SC3	SC2	SC1	SC0
WR	MDEF	MDOV	SLR	SC0				
	idef Idov	operation completes. MDEF is automatically cleared after reading ARCON. MDU Overflow Flag bit. MDOV is set by hardware if the dividend is zero or the result of the multiplication is greater than 0x0000FFFFh						
S	LR	Shift Direct to the left.	tion Control b	it. $SLR = 1$ inc	dicates a shift	to the right ar	nd SLR =0 ind	licates a shift
SC4-0 Shift Count Control and Result bit. If SC0-4 is written with 00000, the normalization operation is performed by MDU. When the normalization is completed, SC4-0 contair number of shifts performed during the normalization. If SC4-0 is written with a non-ze value, then the shift operation is performed by MDU with the number of shifts specifie SC4-0 value.						contains the non-zero		

#### MD0 (0xF9) MDU Data Register 0 R/W (0x00)

	7	6	5	4	3	2	1	0				
RD		MD0[7-0]										
WR			MD0[7-0]									

#### MD1 (0xFA) MDU Data Register 1 R/W (0x00)

	,	0	· /					
	7	6	5	4	3	2	1	0
RD				MD1	[7-0]			



WR

MD1[7-0]

### MD2 (0xFB) MDU Data Register 2 R/W (0x00)

	7	6	5	4	3	2	1	0			
RD				MD2	[7-0]						
WR		MD2[7-0]									
D3 (0xFC) MDU Data Register 3 R/W (0x00)											
	_	0	5	Δ	З	2	1	0			
	7	6	5	-	5	-	•	0			
RD	7	6	5	MD3	[7-0]	2		0			

# 7 6 5 4 3 2 1 0 RD MD4[7-0] MD4[7-0] <t

#### MD5 (0xFE) MDU Data Register 5 R/W (0x00)

	7	6	5	4 3		2	1	0			
RD		MD5[7-0]									
WR		MD5[7-0]									

MDU operation consists of three phases.

1. Load MD0 to MD5 data registers in an appropriate order depending on the operation.

2. Execution of the operations.

3. Read result from MD0 to MD5 registers.

The following list shows the MDU read and write sequences. Each operation has its unique writing sequence and reading sequence of MD0 to MD5 registers, and therefore a precise access sequence is required.

### Division - 32-bit divide by 16-bit or 16-bit divide by 16-bit

Follow the following write-sequences. The first write of MD0 resets the MDU and initiates the MDU error flag mechanism. The last write incites calculation of MDU.

Write MD0 with Dividend LSB byte

Write MD1 with Dividend LSB+1 byte

Write MD2 with Dividend LSB+2 byte (ignore this step for 16-bit divide by 16-bit)

Write MD3 with Dividend MSB byte (ignore this step for 16-bit divide by 16-bit)

Write MD4 with Divisor LSB byte

Write MD5 with Divisor MSB byte

Then follow the following read-sequences. The last read prompts MDU for the next operations.

Read MD0 with Quotient LSB byte

Read MD1 with Quotient LSB+1 byte

Read MD2 with Quotient LSB+2 byte (ignore this step for 16-bit divide by 16-bit)

Read MD3 with Quotient MSB byte (ignore this step for 16-bit divide by 16-bit)

Read MD4 with Remainder LSB byte

Read MD5 with Remainder MSB byte

Read ARCON to confirm error or overflow condition

Please note that if the sequence is violated, the calculation may be interrupted and results in errors.

### Multiplication – 16-bit multiply by 16-bit

Follow the following write sequences.

Write MD0 with Multiplicand LSB byte

Write MD4 with Multiplier LSB byte

Write MD1 with Multiplicand MSB byte



Write MD5 with Multiplier MSB byte Then follow the following read sequences.

Read MD0 with Product LSB byte Read MD1 with Product LSB+1 byte Read MD2 with Product LSB+2 byte Read MD3 with Product MSB byte Read ARCON to confirm error or overflow condition

#### Normalization – 32-bit

Normalization is obtained with integer variables stored in MD0 to MD3. After normalization, all leading zeroes are removed by shift left operations. To start the normalization operation, SC4-0 in ARCON is first written with 00000. After completion of the normalization, SC4-0 is updated with the number of leading zeroes and the normalized result is restored on MD0 to MD3. The number of the shift of the normalization can be used as exponents. The following write sequences should be followed. The last write to ARCON initiates the normalization operations by MDU.

Write MD0 with Operand LSB byte

Write MD1 with Operand LSB+1 byte

Write MD2 with Operand LSB+2 byte

Write MD3 with Operand MSB byte

Write ARCON with SC4-0 = 00000

Then follow the following read sequences.

Read MD0 with Result LSB byte Read MD1 with Result LSB+1 byte Read MD2 with Result LSB+2 byte Read MD3 with Result MSB byte Read SC[4-0] from ARCON for normalization count or error flag

#### Shift – 32-bit

Shift is done with integer variables stored in MD0 to MD3. To start the shift operation, SC4-0 in ARCON is first written with shift count and SLR with shift direction. After completion of the Shift, the result is stored back to MD0 to MD3. The following write sequences should be followed. The last write to ARCON initiates the normalization operations by MDU.

Write MD0 with Operand LSB byte

Write MD1 with Operand LSB+1 byte

Write MD2 with Operand LSB+2 byte

Write MD3 with Operand MSB byte

Write ARCON with SC4-0 = Shift count and SLR with shift direction

Then follow the following read sequences.

Read MD0 with Result LSB byte

Read MD1 with Result LSB+1 byte

Read MD2 with Result LSB+2 byte

Read MD3 with Result MSB byte

Read ARCON's for error flag

#### MDU Flag

The error flag (MDEF) of MDU indicates improperly performed operations. The error mechanism starts at the first MD0 write and finishes with the last read of MD result register. MDEF is set if the current operation is interrupted or restarted by improper writing of the MD register before the operation completes. MDEF is cleared if the operations and proper write/read sequences are successfully complete. The overflow flag (MDOV) of MDU indicates an error of operations. MDOV is set if

The divisor is zero Multiplication overflows Normalization operation is performed on already normalized variables (MD3.7 =1)

#### 1.14 I²C Master

The I²C master controller provides the interface to I²C slave devices. It can be programmed to operate with arbitration and clock synchronization to allow it to operate in multi-master configurations. The master uses SCL and



RS

SDA pins. The controller contains a built-in 8-bit timer to allow various I²C bus speeds. The maximum I²C bus speed is limited to SYSCLK/12.

#### I2CMTP (0xF7h) I²C Master Time Period R/W (0x00)

	7	6	5	4	3	2	1	0				
RD		I2CMTP[7-0]										
WR				I2CMT	P[7-0]							

This register sets the frequency of I²C bus clock. If I2CMTP[7-0] is equal to or larger than 0x01, then SCL_FREQ = SYSCLK FREQ / 8 / (1 + I2CMTP). If I2CMTP[7-0] = 0x00, SCL FREQ = SYSCLK FREQ / 12.

#### I2CMSA (0xF4) I²C Master Slave Address R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		SA[6-0]									
WR	SA[6-0]										
	Ale-01 Slave Address SAIE-01 defines the slave address the I2C master uses to communicate										

Slave Address. SA[6-0] defines the slave address the I²C master uses to communicate. SA[6-0] Receive/Send Bit. RS determines if the following operation is to RECEIVE (RS=1) or SEND (RS=0).

#### I2CMBUF (0xF6) I²C Master Data Buffer Register R/W (0x00)

	7	6 5		4	3	2	1	0				
RD		RD[7-0]										
WR				TD[	7-0]							

I2CMBUF functions as a transmit-data register when written and as a receive-data register when read. When written, TD is sent to the bus by the next SEND or BURST SEND operations. TD[7] is sent first. When read, RD contains the 8-bit data received from the bus upon the last RECEIVE or BURST RECEIVE operation.

#### I2CMCR (0xF5) I²C Master Control and Status Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	BUSBUSY	IDLE	ARBLOST	DATANACK	ADDRNACK	ERROR	BUSY
WR	CLEAR	INFILEN	-	HS	ACK	STOP	START	RUN

The I2CMCR register is used for setting control when it is written, and as a status signal when read.

CLEAR Reset I2C Master State Machine

Set CLEAR=1 will reset the state machine. CLEAR is self-cleared when reset is completed. INFILEN Input Noise Filter Enable. When IFILEN is set, pulses shorter than 50 ns on inputs of SDA and SCL are filtered out. IDLE This bit indicates that I²C master is in the IDLE mode. BUSY This bit indicates that I²C master is receiving or transmitting data, and other status bits are

not valid.

BUSBUSY This bit indicates that the external I²C bus is busy and access to the bus is not possible. This bit is set/reset by START and STOP conditions.

This bit indicates that an error occurs in the last operation. The errors include slave address ERROR was not acknowledged, or transmitted data is not acknowledged, or the master controller loses arbitration.

This bit is automatically set when the last operation slave address transmitted is not ADDRNACK acknowledged.

DATANACK This bit is automatically set when the last operation transmitted data is not acknowledged.

This bit is automatically set when the last operation I²C master controller loses the bus ARBLOST arbitration.

START, STOP, RUN and HS, RS, ACK bits are used to drive I²C Master to initiate and terminate a transaction. The Start bit generates START, or REPEAT START protocol. The Stop bit determines if the cycle stops at the end of the data cycle or continues to a burst. To generate a single read cycle, the designated address is written in SA with RS set to 1, and bits ACK=0, STOP=1, START=1, RUN=1 are set in I2CMCR to perform the operation and then STOP. When the operation is completed (or aborted due to errors), I²C master generates an interrupt. The ACK bit must be set to 1. This causes the controller to send an ACK automatically after each byte transaction. The ACK bit must be reset when set to 0 when the master operates in receive mode and not to receive further data from the slave devices.

The following table lists the permitted control bits combinations in master IDLE mode.



Н	S	RS	ACK				
			ACK	STOP	START	RUN	OPERATIONS
C	)	0	-	0	1	1	START condition followed by SEND. Master remains in TRANSMITTER mode
C	)	0	-	1	1	1	START condition followed by SEND and STOP
C	)	1	0	0	1	1	START condition followed by RECEIVE operation with negative ACK. Master remains in RECEIVER mode
C	)	1	0	1	1	1	START condition followed by RECEIVE and STOP
C	)	1	1	0	1	1	START condition followed by RECEIVE. Master remains in RECEIVER mode
C	)	1	1	1	1	1	Illegal command
The f	follo	wing t	able lists	the permi	tted contro	l bits cor	mbinations in master TRANSMITTER mode.
Н	S	RS	ACK	STOP	START	RUN	OPERATIONS
C	)	-	-	0	0	1	SEND operation. Master remains in TRANSMITTER mode
C	)	-	-	1	0	0	STOP condition
C	)	-	-	1	0	1	SEND followed by STOP condition
C	)	0	-	0	1	1	REPEAT START condition followed by SEND. Master remains in TRANSMITTER mode
C	)	1	-	1	1	1	REPEAT START condition followed by SEND and STOP condition
C	)	1	0	0	1	1	REPEAT START condition followed by RECEIVE operation with negative ACK. Master remains in TRANSMITTER mode
C	D	1	0	1	1	1	REPEAT START condition followed by SEND and STOP condition
C	)	1	1	0	1	1	REPEAT START condition followed by RECEIVE. Master remains in RECEIVER mode
C	)	1	1	1	1	1	Illegal command

The following table lists the permitted control bits combinations in master RECEIVER mode.

HS	RS	ACK	STOP	START	RUN	OPERATIONS
0	-	0	0	0	1	RECEIVE operation with a negative ACK. Master remains in RECEIVE mode
0	-	-	1	0	0	STOP condition
0	-	0	1	0	1	RECEIVE followed by STOP condition
0	-	1	0	0	1	RECEIVE operation. Master remains in RECEIVER mode
0	-	1	1	0	1	Illegal command
0	1	0	0	1	1	REPEAT START condition followed by RECEIVE operation with a negative ACK. Master remains in RECEIVER mode
0	1	0	1	1	1	REPEAT START condition followed by RECEIVE and STOP conditions
0	1	0	1	1	1	REPEAT START condition followed by RECEIVE. Master remains in RECEIVER mode
0	0	-	0	1	1	REPEAT START condition followed by SEND. Master remains in TRANSMITTER mode
0	0	-	1	1	1	REPEAT START condition followed by SEND and STOP conditions

All other control-bit combinations not included in the above three tables are NOP. In Master RECEIVER mode, STOP should be generated only after data negative ACK executed by Master or address negative ACK executed by slave. Negative ACK means SDA is pulled low when the acknowledge clock pulse is generated.

### I2CMTO (0xC3) I²CTime Out Control Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	I2CMTOF				I2CMTO[6-0]			



WR	I2CMTOEN	I2CMTO[6-0]
12	2CMTOEN	I2CM Time out Enable
12	2CMTOF	I2CM Time out Flag
		This bit is set when a timeout occurs. It is cleared when I2CM CLEAR command is issued.
12	2CMTO[6-0]	I2CM Time Out Setting
		The TO time is set to (I2CMTO[6-0]+1)*2*BT. When timeout occurs, an I2CM interrupt will be generated. Where BT = 1 / (SYSCLK_FREQ / 8 / (I2CMTP[7-0]+1)).

#### 1.15 Checksum/CRC Accelerator

To enhance the performance, a hardware Checksum/CRC Accelerator is included and closely coupled with CPU. This provides most commonly used checksum and CRC operation for 8/16/24/32-bit data width. For 8-bit data, one SYSCLK cycle is used; for 16-bit data, two cycles are used; for 32-bit data, four cycles are used.

	2					. ,			
	7	6	5	4	3	2	1	0	
RD	DWIDT	H[1-0]	REVERSE	NOCARRY	SEED	-	-	BUSY	
WR	DWIDT	H[1-0]	REVERSE	NOCARRY	SEED	CRCMODE[2-0]			
D	WIDTH[1-0]	Data Input Data Input 00 – set inp 10 – set inp 11 – set inp Reverse inp REVERSE REVERSE REVERSE REVERSE REVERSE MSB, CCD The followin DWIDTH 0 1 2	Width but as 8-bit wid but as 16-bit w but as 24-bit w but as 32-bit w but MSB/LSB =0 is for LSB f =1 is for MSB =0 order is base =1, then CCD does not affer ATA[0] always ng table show CRCIN[1 CRCIN[1	de vide vide vide Sequence first operation ed on the data ATA[0] holds ct output resul s holds LSB. s the MSB/LS REVERSE=0 7-0] = CCDAT 5-0] = CCDAT	s. a width. For e MSB, and CC It and SEED c B relationship TA[7-0] TA[15-0] TA[23-0]	xample, if the DATA[31] holo ordering i.e., C <u>F</u> CRCIN[1 CRCIN[1 CRCIN[2	data width is 3 ds LSB. CDATA[31] al REVERSE=1 7-0] = CCDAT 5-0] = CCDAT 3-0] = CCDAT	32-bit, and ways holds A[0-7] A[0-15] A[0-23]	
N	OCARRY	NOCARRY	Carry Setting for Checksum NOCARRY=0 uses the previous carry result the for a new result.						
S	EED	NOCARRY=1 discards the previous carry result. Seed Entry For SEED=1, results written into CCDATA become SEED value. SEED=0 for normal data inputs Please note that the MSB/LSB ordering of SEED entry from CCDATA is not affected by REVERSE.							
С	RCMODE[2-0	] CRC/Check 000 – Acce 001 – 8-bit 010 – 32-bi 011 – CRC X16+ 100 – CRC X16+ 101 – CRC X32+ 110 – Rese	ksum Mode lerator is disa Checksum t Checksum -16 (IBM 0x80 -X15+X2+1 -16 (CCITT 0 -X12+X5+1 -32 (ANSI 802 -X26+C23+X2	x1021) 2.3 0x104C11 22+X16+X12+	DB7)	off +X7+X5+X4+	X2+X1+1		

#### CCCFG (0xA078h) Checksum/CRC Accelerator Configuration Register R/W (0x00)



The first step for the programmer is to set the CRCMODE[2-0] for the Checksum or CRC operation and then write "111" to CRCMODE[2-0] to reset the Checksum/CRC states and restore the default seed value (for checksum, seed value=0x00 or 0x00000000, for CRC seed value = 0xFFFF or 0xFFFFFFF).

BUSY CRC Status

BUSY=1 indicates the result is not yet completed. Since only up to two cycles are used to calculate the Checksum or CRC, there is no need to check the BUSY status before the next data entry and reading the results.

CCDATA registers are the data I/O port for Checksum/CRC Accelerator. For 8-bit data width, only CCDATA[7-0] should be used. For data width wider than 8-bit, the high byte should always be written first. Writing the low byte (CCDATA0) completes the data entry and starts the calculations. When SEED=1, the data written goes to CS or CRC seed value. The SEED value entry bit ordering is not affected by the REVERSE setting. The result of the accelerator can be directly read out from CCDATA registers and it is not affected by the REVERSE setting.

#### CCDATA0 (0xA07Ch) Checksum/CRC Data Register 0 R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	CCDATA[7-0]								
WR		CCDATA[7-0]							

#### CCDATA1 (0xA07Dh) Checksum/CRC Data Register 1 R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	CCDATA[15-0]								
WR	CCDATA[15-0]								

#### CCDATA2 (0xA07Eh) Checksum/CRC Data Register 2 R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	CCDATA[23-16]								
WR	CCDATA[23-16]								

#### CCDATA3 (0xA07Fh) Checksum/CRC Data Register 2 R/W (0x00)

	7	7 6 5 4 3 2 1 0							
RD	CCDATA[31-24]								
WR	CCDATA[31-24]								

#### 1.16 Break Point and Debug Controller

The CPU core also includes a Break Point Controller for software debugging purposes and handling exceptions. Program Counter breakpoint triggers at PC address matching, and there are seven PC matching settings available. Single Step breakpoint triggers at interaction return from an interrupt routine.

Upon the matching of breakpoint conditions, the Break Point Controller issues BKP Interrupt for handling the breakpoints. The BKP Interrupt vector is located at 0x7B. Upon entering the BKP ISR (Break Point Interrupt Service Routine), all interrupts and counters (WDT, T0, T1, and T2) are disabled. To allow further interrupts and continuing counting, the BKP ISR must be enabled. At exiting, the BKP ISR setting must be restored to resume normal operations.

#### BPINTF (A0E0h) Break Point Interrupt Flag Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	STEP_IF	-	-	-	-	-	PC2IF	PC1IF
WR	STEP_IF	-	-	-	-	-	PC2IF	PC1IF

This register is for reading the Break Points interrupt flags.

STEP_IF

This bit is set when the Break Point conditions are met by a new instruction fetching from an interrupt routine. This bit must be cleared by software.

PC2IF – PC1IF These bits are set when Break Point conditions are met by PC2 – PC1 address. These bits must be cleared by software.

#### BPINTE (A0E1h) Break Point Interrupt Enable Register R/W (0x00) TB Protected

		7	6	5	4	3	2	1	0
--	--	---	---	---	---	---	---	---	---



RD	STEP_IE	-	-	-	-	-	PC2IE	PC1IE
WR	STEP_IE	-	-	-	-	-	PC2IE	PC1IE

This register controls the enabling of individual Break Points interrupt.

STEP_IE Set this bit to enable Single Step event breakpoint interrupt.

PC2IE – PC1IE Set these bits to enable PC2 to PC1 address match breakpoint interrupts.

### BPINTC (A0E2h) Break Point Interrupt Control Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	-	-	-	-
WR	-	-	-	-	-	-	-	-

This register is reserved for other applications.

### BPCTRL (A0E3h) DBG and BKP ISR Control and Status Register R/W (b'11111100)

	7	6	5	4	3	2	1	0
RD	DBGINTEN	DBGWDTEN	DBGT2EN	DBGT1EN	DBGT0EN	-	-	DBGGST
WR	DBGINTEN	DBGWDTEN	DBGT2EN	DBGT1EN	DBGT0EN	-	-	DBGGST

When entering the DBG or BKP ISR (Interrupt Service Routine), all interrupts and timers are disabled. The enabled bits are cleared by hardware reset in this register. As the interrupts and timers are disabled, the ISR can process debugging requirements in a suspended state. If a specific timer should be kept active, it must be enabled by ISR after ISR entry. Before the exit of DBG and BKP ISR, the control bits should be enabled to allow the timers to resume operating. This register should be modified only in Debug ISR.

- DBGINTEN Set this bit to enable all interrupts (except WDT interrupt). This bit is cleared automatically at the entry of DBG and BKP ISR. Set this bit to allow ISR to be further interrupted by other interrupts. This is sometimes necessary if DBG or BKP ISR needs to use UART or I²C, for example.
- DBGWDEN Set this bit to allow WDT counting during the DBG and BKP ISR. This bit should always be set before exiting the ISR.
- DBGT2EN Set this bit to allow T2 counting during the DBG and BKP ISR. This bit should always be set before exiting the ISR. This bit only controls the counting but not T2 interrupt.
- DBGT1EN Set this bit to allow T1 counting during the DBG and BKP ISR. This bit should always be set before exiting the ISR. This bit only controls the counting but not T1 interrupt.
- DBGT0EN Set this bit to allow T0 counting during the DBG and BKP ISR. This bit should always be set before exiting the ISR. This bit only controls the counting but not T0 interrupt.
- DBGST This bit indicates the DBG and BKP ISR status. It is set to 1 when entering DBG and BKP ISR. It should be cleared when exiting the DBG and BKP ISR. Checking this bit allows other interrupt routines to determine whether it is a sub-service of the DBG and BKP ISR.

### PC1AL (A0F0h) Program Counter Break Point 1 Low Address Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		PC1AL[7-0]								
WR		PC1AL[7-0]								

This register defines the PC low address for PC match break point 1.

#### PC1AH (A0F1h) Program Counter Break Point 1 High Address Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		PC1AH[7-0]									
WR		PC1AH[7-0]									

This register defines the PC high address for PC match break point 1.

### PC1AT (A0F2h) Program Counter Break Point 1 Top Address Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	PC1AT[7-0]										
WR	PC1AT[7-0]										
VVIX	PC1AT[7-0]										

This register defines the PC top address for PC match break point 1. PC1AT:PC1HT:PC1LT together form a 24 bit



compare value of break point 1 for Program Counter.

### PC2AL (A0F4h) Program Counter Break Point 2 Low Address Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		PC2AL[7-0]								
WR	PC2AL[7-0]									

This register defines the PC low address for PC match breakpoint 2.

#### PC2AH (A0F5h) Program Counter Break Point 2 High Address Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		PC2AH[7-0]								
WR		PC2AH[7-0]								

This register defines the PC high address for PC match breakpoint 2.

### PC2AT (A0F6h) Program Counter Break Point 2 Top Address Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		PC2AT[7-0]								
WR		PC2AT[7-0]								

This register defines the PC top address for PC match breakpoint 2. PC2AT, PC2HT and PC2LT together form a 24bit compare value of PC breakpoint 2 for Program Counter.

Host or program can obtain the status of the breakpoint controller through the current breakpoint address and next PC address register. DBPCID[23-0] contains the PC address of the just executed instruction when the breakpoint occurs. DBNXPC[23-0] contains the next PC address to be executed when the breakpoint occurs, and therefore it is usually exactly the same value of the breakpointer setting.



	7	6	5	4	3	2	1	0			
RD			1	DBPCI	D[7-0]						
WR				-							
BPCIDH	l (A099h) Deb	oug Program	Counter Ad	dress High Re	egister RO ((	)x00)					
	7	6	5	4	3	2	1	0			
RD				DBPCI	D[15-8]						
WR				-							
BPCIDT	(A09Ah) Deb	oug Program	Counter Ad	dress Top Re	gister RO (0	x00)					
	7	6	5	4	3	2	1	0			
RD		DBPCID[23-16]									
WR				-							
BPCNX	L (A09Bh) De	bug Program	n Counter N	ext Address L	ow Register	RO (0x00)					
	7	6	5	4	3	2	1	0			
RD		DBPCNX[7-0]									
WR				-							
BPCNX	H (A09Ch) De	bug Progra	n Counter N	ext Address F	ligh Registe	r RO (0x00)					
	7	6	5	4	3	2	1	0			
RD				DBPCN	X[15-8]						
WR				-							
BPCNX	T (A09Dh) De	bug Program	n Counter N	ext Address T	op Register	RO (0x00)					
	7	6	5	4	3	2	1	0			
RD				DBPCN	([23-16]						
WR				-							
TEPCTF	RL (A09Eh) Si	ingle Step C	ontrol Enabl	e Register R/V	V (0x00)						
	7	6	5	4	3	2	1	0			
				STEPCT	RL[7-0]						
RD				012101	L - J						

## 1.17 Debug I²C Port

The I²C Slave 2 (I2CS2) can be configured as the debug and ISP port. This is achieved by assigning a predefined debug ID for the I²C Slave address. When a host issues I²C access to this special address, a DBG interrupt is generated. DBG Interrupt has the highest priority. The DBG interrupt vector is located at 0x83. DBG ISR is used to communicate with the host and is usually closely associated with BKP ISR.

## SI2CDBGID (A09Fh) Slave I²C Debug ID Register R/W (0x36) TB Protected

	( )		0 0	· · ·						
	7	6	5	4	3	2	1	0		
RD	DBGSI2C2EN		SI2CDBGID[6:0]							
WR	DBGSI2C2EN		SI2CDBGID[6:0]							

DBGSI2C2EN DBGSI2C2EN=1 enables I2CS2 as debug port. When I2CS2 receives access of I²C address matching SI2CDBGID[6:0], a debug interrupt is generated.

SI2CDBGID[6:0] Slave I²C ID address for debug function.

## 1.18 Data SRAM ECC Handling

The data SRAM (IRAM and XRAM) is configured as 2048 x 13-bit. An 8:5 ECC encoder and decoder are implemented to check the SRAM data. ECC check is through hardware and performed automatically. It can correct a



1-bit error in each byte and detect a 2-bit error in each byte. All generation and checking are done in hardware. It is strongly recommended all SRAM data should be initialized at power-on or after reset if ECC is enabled to avoid initial ECC error. If ECC encounters an uncorrectable error, hardware will latch the address and trigger an interrupt. Software needs to examine the severity of data corruption and take appropriate actions. Please note that, during switching between ECC and non-ECC mode, all the data in SRAM will be corrupted, and thus requires re-initialization. It is strongly suggested to keep ECC enabled for best reliability as well as noise immunity.

## DECCCFG (0xA02Dh) Data ECC Configuration Register R/W (0x80) TB Protected

	· /		•	-						
	7	6	5	4	3	2	1	0		
RD	DECCEN	-	DECCIEN2	DECCIEN1	-	-	DECCIF2	DECCIF1		
WR	DECCEN	-	- DECCIEN2 DECCIEN1 DECCIF2 DECCIF							
D	DECCEN	Data ECC	Enable							
D	DECCIEN2 Data ECC Uncorrectable Error Interrupt Enable									
D	DECCIEN1	Data ECC	Correctable E	rror Interrupt E	Enable					
D	DECCIF2	Data ECC	Jncorrectable	Error Interrup	ot Flag					
D	DECCIF1	DECCIF2 is Data ECC	s set independ Correctable E	ardware wher dent of DECC rror Interrupt F	IEN2. DECCI ⁻ lag	F2 needs to b	e cleared by s	software.		
	DECCIF1 is set to 1 by hardware when reading SRAM encounters a correctable error. DECCIF1 is set independent of DECCIEN1. DECCIF1 needs to be cleared by software.									
Please note that if a correctable error is encountered, the data will be automatically corrected. To prevent							prevent			

further corruption, software should rewrite the data into the SRAM upon DECCIF1 interrupt.

### DECCADL (0xA02Eh) Data ECC Configuration and Address Register Low RO (0x00)

	7	6	5	4	3	2	1	0			
RD		DECCAD[7-0]									
WR		-									

## DECCADH (0xA02Fh) Data ECC Configuration and Address Register High RO (0x80)

	7	6	5	4	3	2	1	0			
RD		DECCAD[15-8]									
WR		-									

DECCAD[15-0] records the address of ECC fault when data SRAM ECC error occurs. It is read-only and reflects the error address that causes DECCIF to be set. If DECCIF is set and not cleared, DECCAD will not be updated if a further error is detected.

## 1.19 Program ECC Handling

The program code stored in e-Flash has built-in ECC checking. The e-Flash is in 16-bit width, and when read by CPU, the lower LSB 8-bit is read for instruction and the upper MSB 8-bit contains the ECC value of the LSB 8-bit. The ECC is nibble based, [15-12] is ECC for [7-4], and [11-8] is ECC for [3-0]. Four bits ECC for four bits data allows one bit error correction and two bits error detection. This means it is possible for 2-bit error correction of an 8-bit code, and this greatly increases the reliability of the overall program robustness.

During program fetch and execution, ECC is performed simultaneously by hardware. If any ECC correctable error is detected, the value fetched is corrected, and optionally a PECCIEN1 interrupt can be generated. If any ECC non-correctable error is detected, two options can be configured, either a PECCIEN2 interrupt can be generated or a software reset can be generated. In both PECCIEN interrupts, the address of the error encountered is latched in PECCAD[15-0].

### PECCCFG (0xA00Dh) Program ECC Configuration Register R/W (0x80) TB Protected

ſ		7	6	5	4	3	2	1	0
	RD	FCECCEN	-	PECCIEN2	PECCIEN1	-	-	PECCIF2	PECCIF1
	WR	FCECCEN	-	PECCIEN2	PECCIEN1	-	-	PECCIF2	PECCIF1
_	F	CECCEN	This bit cor Controller r	ead low byte	CC Control h Controller R contains ECC / data from e-F	corrected dat		,	
				0011-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	alala 🗖 uu au luata	un unt Europela			

PECCIEN2 Program ECC Uncorrectable Error Interrupt Enable



PECCIEN1	Program ECC Correctable Error Interrupt Enable
PECCIF2	Program ECC Uncorrectable Error Interrupt Flag
	PECCIF2 is set to 1 by hardware when program fetching from e-Flash encounters
	uncorrectable error. PECCIF2 is set independent of PECCIEN2. PECCIF2 needs to be cleared by software.
PECCIF1	Program ECC Correctable Error Interrupt Flag
	PECCIF1 is set to 1 by hardware when program fetching from e-Flash encounters correctable error. PECCIF1 is set independent of PECCIEN1. PECCIF1 needs to be cleared by software.

## PECCADL (0xA00Eh) Program ECC Fault Address Register Low RO (0x00)

	7	6	5	4	3	2	1	0			
RD		PECCAD[7-0]									
WR		-									

## PECCADH (0xA00Fh) Program ECC Fault Address Register High R/W (0x80)

	7	6	5	4	3	2	1	0			
RD		PECCAD[15-8]									
WR		-									

PECCAD[15-0] records the address of ECC fault when Flash ECC error occurs. It is read-only and reflects the last error address.

Note: PECCAD[15:14] always read as 0, and software needs to update PECCAD[15:14] value as 0~3 for flash correction once PECCIF1 was detected

## 1.20 Memory and Logic BIST Test

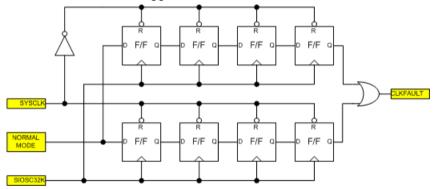
### BSTCMD (0xA016h) SRAM Built-In and Logic Self-Test R/W (0x00) TB Protected

	7	6	5	4	3	2	1	0			
RD		MOD	E[3-0]		BST	-	FAIL	FINISH			
WR		MOD	E[3-0]			BSTCM	/ID[3-0]				
M	IODE[3-0]	BIST Mode	Selection								
		0000 – Nor									
		0001 – SR/									
		0010 – Reserved									
		0011 – Res									
			gister LBIST								
		0101 – Res									
		0110 – Res									
		0111 – Res									
1000 – Normal Mode 1001 – SRAM MBIST and monitor on pins											
1001 – SRAM MBIST and monitor on pins 1010 – Reserved											
		1010 – Res 1011 – Res									
		1100 – Register LBIST and monitor on pins									
		1101 – Reserved									
		1110 – Reserved									
		1111 – Res									
		Please note	e that MODE	3-0] is cleared	l only by POR	and RSTN. S	Software can r	ead this			
					to determine v						
		even after a	a software res	et.							
В	ST	BIST Statu	-								
			•	are when BIS	T in ongoing.						
F.	AIL	BIST Test I	0								
					IST error has	occurred. FA	IL is cleared to	o 0 by			
F				ST command	is issued.						
F	INISH	BIST Comp	neuon Fiag								



FINISH is set to 1 by hardware when the BIST controller finishes the test. FINISH is cleared to 0 by hardware when a new BIST command is issued.
 BSTCMD[3-0] Memory BIST Command
 Writing BSTCMD[3-0] with value 4b'0101 causes the BIST controller to perform BIST. Writing BSTCMD[3-0] with value 4b'1010 causes the BIST controller to perform BIST, and after BIST is completed, it automatically generates a software reset.
 Writing BSTCMD[3-0] with value 4b'0000 causes FAIL and FINISH bits to be cleared to 0. Any other value will either have no effect or abort any ongoing BIST.

After the BSTCMD is issued, CPU is paused until BIST is completed. Any BIST operation will result in undefined CPU states, and undefined SRAM content. Therefore, it is highly recommended that a software reset or initiation should be performed after any BIST operation. Please also note that MODE[3-0], FINISH and FAIL bits are not cleared by software resets.

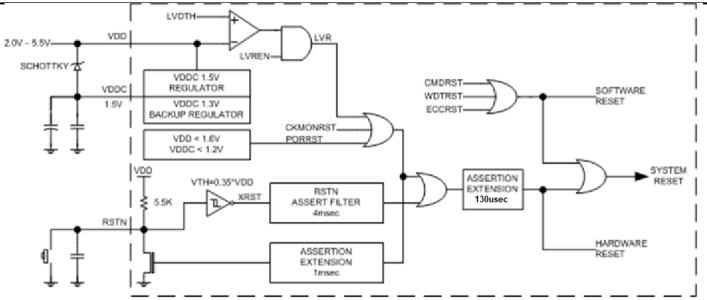

## TSTMON (0xA014h) Test Monitor Flag R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		TSTMON[7-0]									
WR		TSTMON[7-0]									

TSTMON register stores temporary status and is initialized by power-on reset only.

## 1.21 System Clock Monitoring

SYSCLK in normal running mode is monitored by SOSC32KHz. If SYSCLK is not present in normal mode for four SOSC32KHz cycles, a hardware reset is triggered.




## 1.22 <u>Reset</u>

There are several reset sources which include both software resets and hardware resets. Software resets include command reset, WDT reset and ECC error reset. Hardware resets include power-on reset (low voltage detect on VDDC), LVD reset (low voltage detect on VDD), SYSCLK monitor reset, and external RSTN reset. Software reset only restores some registers to default values, and hardware reset restores all registers to their default values.

RSTN reset will filter out any low glitch on RSTN with less than 4msec. All hardware reset conditions once met will be extended by 4 msec when exiting reset. Internal hardware reset also has feedback to the RSTN pin and extends the reset duration by external RSTN R/C time. The reset scheme is shown in the following diagram.





### RSTCMD (0xA017h) Reset Command Register R/W (0x00) TB Protected

7       RD       WR     RSTCKM       RSTCKM		5 - -	4 - CLRF	3 CKMRF	2 ECCRF	1 WDTRF	0 CMDRF					
WR RSTCKM	Reset Enab	- - le for Clock N	- CLRF	CKMRF		WDTRF	CMDRF					
	Reset Enab	- le for Clock N	CLRF				-					
RSTCKM		le for Clock N										
RSTECC	RENCKM=1 enables reset after clock fault detection. RSTCKM is cleared to 0 after any reset. Default RSTCKM is 0. RSTECC Reset Enable for Uncorrectable Code Fetch ECC Error											
CKMRF	RSTECC=1 enables reset at e-Flash code fetch ECC error. Default RSTECC is 0.         CKMRF       Clock Monitor Fault Reset Flag         CKMRF is set to 1 by hardware when a clock fault reset has occurred. CKMRF is not cleared by reset except power-on reset.											
ECCRF	ECC Error F ECCRF is s	Reset Flag et to 1 by har	dware when a	an ECC error r not cleared by								
WDTRF	WDT Reset WDTRF is s	•	rdware when '	WTRF, WT1R	F or WT2RF i	s set.						
CLRF	Clear Reset	Flag		CCRF, WDTF			leared.					
RSTCMD[3-0]	RSTCMD[3-0] Software Reset Command Writing RSTCMD[3-0] with consecutive 4b'0101, 4b'1010 sequences will cause a software reset. Any other value will clear the sequence state. These bits are write-only and self- cleared. Note: Bits 4~7 of RSTCMD register can't be read.											

Note: Bits 4~7 of RSTCMD register can't be read.



## 2 Flash Controller

The flash controller connects the CPU to the on-chip embedded FLASH memory. The FLASH memory functions as the program storage as well as non-volatile data storage. The program access of the FLASH does not require any special attention. When an ECC error occurs during program fetch, there comes out ECC interrupt or reset.

When the FLASH is used as data storage, software issues commands to the FLASH controller through the XFR registers. And when the FLASH controller processes these commands, CPU is held idle until the commands are completed. There is a timeout mechanism for holding CPU in idle to prevent operations hang up.

From FLASH controller point of view, the embedded Flash is always in 16-bit width with no distinction between ECC and data information. For code storage through FLASH controller, ECC byte (upper MSB 8-bit) must be calculated by software. During the read command, ECC is detected but not corrected, and the raw content is loaded into FLSHDAT[15-0]. If ECC error is detected, FAIL status is set after the read command.

The e-Flash contains 128 pages (also referred as Sector), and each page is 512x16. It also contains two IFB (Information Blocks) pages. In Flash operation, the erase command only operates on units of page.

	7	6	5	4	3		2	1	0				
RD	WRVFY	BUSY	FAIL	CMD4	CMI	D3	CMD2	CMD1	CMD0				
WR		CYC[2-0]		CMD4	CMI	D3	CMD2	CMD1	CMD0				
V	VRVFY	compares i	Write Result Verify. At the end of a write cycle, hardware reads back the data and compares it with which should be written to the flash. If there is a mismatch, this bit represents 0. It is reset to 1 by hardware when another ISP command is executed.										
E	BUSY	Flash comr		ocessing. T	his bit indi	icates tha	at Flash Co	ontroller is exe					
	FAIL CYC[2-0]	reason. It i issuing a co command i into protect Program sh RSTCMD[2 the future E Flash Com	s recommen ommand to the s issued. Po ed region, E hould check he cl (ECCRF) is ECC errors co mand Time (	ded that the he Flash cor ssible cause CC read err RSTCMD[2] s 1, the prog an't be respo Dut	program s ntroller. It es of FAIL or, and co for a flash gram must onded to F	should ve is not cle include a mmand ti operatic write RS PECCAD[	erify the co eared by re address ou imeout. on if FLSH( TCMD[4] a [15:0]	xecution fails mmand exect ading when a t of range, or CMD[5] (FAIL as 1 to clear E	ution after new address fall ) is set. Ond CCRF, or a				
					The num			defined by ISI Ilated as follov ERAS	wing.				
		0 0		0		55		5435					
		0	0	1		60		5953					
		0	1	0	0 65			645	2				
		0	1	1		69		689	7				
		1	0	0		75		740	8				
		1	0	1		80		790	6				
		1	1	0		85		840	4				
		1	1	1		89		888	9				
CMD4 – CMD0		Flash Com These bits	define comm	nands for the	e Flash coi	ntroller.	The valid c	commands are eturn with a F					
		CMD4	CMD3	CMD2	CMD1	CMD	)	COMMA	ND				
		1	0	0	0	0		Main Memor	y Read				

### FLSHCMD (A025h) Flash Controller Command Register R/W (0x80) TB Protected

CMD4	CMD3	CMD2	CMD1	CMD0	COMMAND
1	0	0	0	0	Main Memory Read
0	1	0	0	0	Main Memory Sector Erase
0	0	1	0	0	Main Memory Write
0	0	0	1	0	IFB Read
0	0	0	0	1	IFB Write
0	0	0	1	1	IFB Sector Erase



For any Read command, the result high byte contains the ECC code, and low byte contains the data that is ECC corrected. If there is any ECC error, then FAIL bit is set. To find out what ECC error occurs, software can inspect PECCIF1 and PEECIF2 bits in PECCCFG register.

To read the e-Flash raw data, the FCECCEN in PECCCFG register can be set to 0.

### FLSHDATL (A020h) Flash Controller Data Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		Flash Read Data Register DATA[7-0]									
WR		Flash Write Data Register DATA[7-0]									

Please note: DATA[7-0] in READ operation will return either ECC corrected data or e-Flash raw data and which depends on FCECEEN bit setting in PECCCFG register.

### FLSHDATH (A021h) Flash Controller Data Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		Flash Read Data Register DATA[15-8]								
WR		Flash Write Data Register DATA[15-8]								

### FLSHADL (A022h) Flash Controller Low Address Data Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		Flash Address Low Byte Register ADDR[7-0]								
WR	Flash Address Low Byte Register ADDR[7-0]									

### FLSHADH (A023h) Flash Controller High Address Data Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		Flash Address High Byte Register ADDR[15-8]								
WR		Flash Address High Byte Register ADDR[15-8]								

### FLSHECC (A024h) Flash ECC Accelerator Register R/W

	7	6	5	4	3	2	1	0		
RD		ECC[7-0]								
WR		DATA[7-0]								

FLSHECC aids the calculation of ECC value of an arbitrary 8-bit data. The data is written to FLSHECC, and its corresponding ECC value can be read out from ECC.

### ISPCLKF (A026h) Flash Command Clock Scaler R/W (0x25) TB Protected

	7	6	5	4	3	2	1	0		
RD		ISPCLKF[7-0]								
WR		ISPCLKF[7-0]								

ISPCLKF[7-0] configures the clock time base for generation of Flash erase and write timing. ISPCLK = SYSCLK*(ISPCLKF[7-0]+1)/256. For correct timing, ISPCLK should be set to approximately at 2MHz.

The e-Flash has protection segment size of 1024 x 16. Each protection segment zone includes two Flash pages (also referred as Sector). For CS8977, there are 64 segments at total 64K x 16. Each segment (or called zone) is separately protected by corresponding two bits, PRT and PPT. PRT default after reset is 0 and PPT is 1, where 0 means protected, and 1 means unprotected. Both bits need to be 1 for modification and erasure. PPT (permanent) can be written 0 only and once written 0, it stays 0 until reset. The protection mechanism is the same for IFB0 and IFB1.

### FLSHPRT0 (A030h) Flash Zone Protection Register 0 R/W (0x00) TB Protected

	7	6	5	4	3	2	1	0			
RD		FLSHPRT[7-0]									
WR		FLSHPRT[7-0]									

### FLSHPRT1 (A031h) Flash Zone Protection Register 1 R/W (0x00) TB Protected

-	<b>\</b>			(				
	7	6	5	1	3	2	1	0
	1	0	5	4	5	2	I	0



RD				FLSHPI	RT[15-8]					
WR				FLSHPI	RT[15-8]					
FLSHPR	T2 (A032h) F	lash Zone Pr	otection Reg	ister 2 R/W (	0x00) TB Pro	tected				
	7	6	5	4	3	2	1	0		
RD				FLSHPF	RT[23-16]					
WR				FLSHPF	RT[23-16]					
FLSHPR	T3 (A033h) F	lash Zone Pr	otection Reg	ister 3 R/W (	0x00) TB Pro	tected	1	1		
	7	6	5	4	3	2	1	0		
RD					RT[31-24]					
WR				FLSHPF	RT[31-24]					
FLSHPR	T4 (A034h) F	lash Zone Pr	otection Reg	ister 4 R/W (	0x00) TB Pro	tected				
	7	6	5	4	3	2	1	0		
RD				FLSHPF	RT[39-32]			·		
WR				FLSHPF	RT[39-32]					
FLSHPR	T5 (A035h) F	lash Zone Pr	otection Reg	ister 5 R/W ((	0x00) TB Pro	tected				
	7	6	5	4	3	2	1	0		
RD			·	FLSHPF	RT[47-40]			·		
WR				FLSHPF	RT[47-40]					
FLSHPR	T6 (A036h) F	lash Zone Pr	otection Reg	ister 6 R/W ((	0x00) TB Pro	tected				
	7	6	5	4	3	2	1	0		
RD				FLSHPF	RT[55-48]					
WR	FLSHPRT[55-48]									
	Γ7 (Δ037h) F	lash Zone Pr	otection Reg			tected				
	7	6	5	4	3	2	1	0		
RD	,	0	5	•	T[63-56]	2	I	Ū		
WR					RT[63-56]					
		lash Zone Pi	rotection Peri			vEE) TB Prot	ected			
		6	5	-	3			0		
RD	,	0	5		PT[7-0]	2	I	Ū		
WR					PT[7-0]					
FLSHPP	, ,	1	rotection Per	-		-				
	7	6	5	4	3	2	1	0		
RD					PT[15-8]					
WR				FLSHP	PT[15-8]					
FLSHPP	Γ2 (A0C2h) F	lash Zone P	rotection Peri	manent Regis	ster 2 R/W (0	xFF) TB Prot	ected			
	7	6	5	4	3	2	1	0		
RD				FLSHPF	PT[23-16]					
WR				FLSHPF	PT[23-16]					
FLSHPP	T3 (A0C3h) Flash Zone Protection Permanent Register 3 R/W (0xFF) TB Protected									
	7	6	5	4	3	2	1	0		
RD				FLSHPF	PT[31-24]					
WR										
FLSHPP	[4 (A0C4h) F	lash Zone P	rotection Peri	manent Regis	ster 4 R/W 0	(FF) TB Prote	cted			
	7	6	5	4	3	2	1	0		
1			· · ·			· -				



RD				FLSHPP	T[39-32]						
WR				FLSHPP	T[39-32]						
LSHPPT	5 (A0C5h) F	lash Zone P	rotection Peri	manent Regis	ster 5 R/W (02	xFF) TB Pro	otected				
	7	6	5	4	3	2	1	0			
RD				FLSHPP	T[47-40]						
WR				FLSHPP	T[47-40]						
LSHPPT	⁻ 6 (A0C6h) F	lash Zone P	rotection Peri	manent Regis	ster 6 R/W (02	xFF) TB Pro	otected				
	7	6	5	4	3	2	1	0			
RD		FLSHPPT[55-48]									
WR		FLSHPPT[55-48]									
LSHPPT	7 (A0C7h) F	lash Zone P	rotection Peri	manent Regis	ster 7 R/W (02	xFF) TB Pro	otected				
	7	6	5	4	3	2	1	0			
RD				FLSHPP	T[63-56]						
WR				FLSHPP	T[63-56]						
LSHPTI	(A0C8h) Fla	sh IFB Prote	ction Registe	r R/W (0bXX1	1XX00) TB F	Protected					
	7	6	5	4	3	2	1	0			
RD	-	-	IFBPPT1	IFBPPT0	-	-	IFBPRT1	IFBPRT0			
WR	-	-	IFBPPT1	IFBPPT0	-	-	IFBPRT1	IFBPRT0			
LSHPRT	「C (A027h) F	lash Contro	ller Code Pro	tection Regis	ter R/W (0x0	0) TB Prote	cted				
	7	6	5	4	3	2	1	0			
RD		1	-	-		I.		STAT			
WR	FLSHPRTC[7-0]										

writes "55" into this register to turn off protection. However, protection is maintained until a wait time (approximately 300msec) has expired. The 300msec delay prevents any false action due to power or interfaces transient. Any write value other than "55" will turn on the protection immediately. STAT indicates the protection status. STAT=1 indicates the protection is off, and STAT=0 indicates the protection is on.

## FLSHVDD (A015h) Flash VDD Switch Control Register R/W (0x00) TB Protected

	7	6	5	4	3	2	1	0	
RD	-								
WR	FLSHVDD[7-0]								

FLSHVDD is used to control the supply voltage to the e-Flash during sleep mode. Writing FLSHVDD with 0x55 will set SLEEPSW to 1. If SLEEPSW=1, the power supply to the e-Flash is turned off during sleep mode. The default for SLEEPSW is 0, so the e-Flash supply is always on.



## 3 I2C Slave Controller 2 (I2CS2)

The I²C Slave Controller 2 has dual functions – as a debug port for communication with the host or as a regular I²C slave port. Both functions can coexist. I²C Slave 2 controller also supports the clock stretching functions.

The debug accessed by the host is through I²C slave address defined by SI2CSDBGID register and enabled by DBGSI2C2EN=1. When I2CS2 received this matched address, a DBG interrupt is generated. This is described in the Debug and ISP sections. If DBGSI2C2EN=0, then I2CS2 functions as a regular I²C slave. The address of the slave is set by I2CSADR2 register. The MSB in I2CSADR2 is the enable bit for the I²C slave controller and I2CSADR2[6-0] specifies the actual slave address.

In receive mode, the controller detects a valid matched address and issues an ADDRMI interrupt. At the same time, the data bit on SDA line is shifted into the receive buffer. The RCBI interrupt is generated whenever a complete byte is received and is ready to be read from I2CSDAT2. If the software does not respond to RCBI interrupt in time (i.e., RCBI is not cleared) for any reason, and a new byte is received, the controller either forces a NACK response on I²C (if CLKSTREN bit is not set) or by pulling and holding SDA low (if CLKSTREN bit is set) to stretch the SCL low duration to force the master into a wait state. In clock stretching mode, SCL is released when the software responds to RCBI interrupt and clears RCBI flag.

In transmit mode, the controller detects a valid matched address and issues an ADDRMI interrupt. At the same time, the data preloaded in the transmit data register through I2CSDAT2 is transferred to the transmit shift register and is serially shifted out onto the SDA line. When this occurs, the controller generates a TXBI interrupt to inform the software that a new byte can be written into I2CSDAT2. When the shift register is empty and ready for the next transmit, the slave controller checks if the new byte is written to the I2CSDAT2. If TXBI is not cleared, it indicates a lack of new data and the slave controller holds the SCL line low to stretch the current clock cycle if CLKSTREN is set. If the clock stretching is not enabled, the slave controller takes the old byte into the shift register and replies with NACK, thus causing data corruption. On the other hand, if the master returns the NACK after the byte transfer, this indicates the end of data to the I²C slave. In this case, the I²C slave releases the data line to allow the master to generate a STOP or REPEAT START.

The I²C slave controller also implements the input noise spike filter, and this is enabled by INFILEN bit in the I2CSCON2 register. The filter is implemented using a digital circuit. When INFILEN is set, the spikes less than 1/2 SYSCLK period on the input of SDA and SCL lines are filtered out. If INFILEN is low, no input filtering is done. The following registers are related to I²C Slave Controller. I²C slave controller also uses SYSCLK to sample the SCL and SDA signals, and therefore the maximum allowable I²C bus speed is limited to SYSCLK/8 with conforming data setup and hold time. If setup and hold time cannot be guaranteed, then it is recommended the bus speed is limited to 1/40 SYSCLK.

-	(- ) -			. ( )							
	7	6	5	4	3	2	1	0			
RD	-	-	-	START	-	-	-	XMT			
WR	I2CSRST	EADDRMI	ESTOPI	ERPSTARTI	ETXBI	ERCBI	CLKSTREN	INFILEN			
12	2CSRST	I ² C Slave R	eset bit								
		Setting this bit causes the Slave Controller to reset all internal state machines. Clear this bit									
				-	lears the I2CS	SADR2 (I ² C sla	ave address x	).			
EADDRMI ADDRMI Interrupt Enable bit											
		Set this bit to set ADDRMI interrupt as the I ² C slave interrupt. This interrupt is generated									
_		when I ² C slave receives a matched address.									
E	STOPI		rupt Enable I		. 120						
-				interrupt as the	e I ² C slave int	errupt.					
	RPSTARTI		I Interrupt Er		as the 12C ale						
_	TXBI			ARTI interrupt		•	e I ² C slave inte	rrunt			
	RCBI		•				e I ² C slave inte				
			•			•	ction of the sla	•			
U	LKSTREN						specification.				
				•			itten into trans				
							ata cannot be l				
							again to the tra				
	buffer.										
11	NFILEN	Input Noise	Filter Enable	bit							
		Set this bit to enable the input noise filter of SDA and SCL lines. When the filter is enabled,									
	it filters out the spike of less than 50nsec.										

## I2CSCON2 (0xDB) I2CS2 Configuration Register R/W (0x00)



XMT

This bit is set by the controller when the I²C slave is in transmit operation. It is cleared when the I²C slave controller is in receive operation.

	7	6	5	4	3	2	1	0			
RD	FIRSTBT	ADDRMI	STOPI	RPSTARTI	TXBI	RCBI	START	NACK			
WR	DADDR	ADDRMI	STOPI	RPSTARTI	HOLDT[3]	HOLDT[2]	HOLDT[1]	HOLDT[0]			
	IRSTBT DADDR	This bit is set to indicate the data in the data register as the first byte received after the address match. This bit is cleared after the first byte of the transaction is read. The bit is read-only and generated by the slave controller. Double Address Enable If DADDR=1, the LSB bit of the address register is ignored. This allows receiving two									
А	ADDRMI consecutive slave addresses, for example, 0x1010000 and 0x1010001. Slave Address Match Interrupt Flag bit This bit is set when the received address matches the address defined in I2CSADR ADDRMI is set, this generates an interrupt. This bit must be cleared by software										
S	STOPI	Stop Condit This bit is s	ADDRMI is set, this generates an interrupt. This bit must be cleared by software. Stop Condition Interrupt Flag bit This bit is set when the slave controller detects a STOP condition on the SCL and SDA lines. This bit must be cleared by software.								
R	RPTSARTI	Repeat Sta This bit is s	rt Condition Ir et when the s	nterrupt Flag b lave controller		PEAT START	condition on	the SCL			
Т	XBI	Transmit Bu This bit is s	uffer Interrupt et when the s	Flag lave controller	is ready to ac into I2CSDAT		yte for transmi	ission. This			
R	RCBI	Receiver Bu	uffer Interrupt et when the s	Flag bit lave controller	· puts new dat er the softwar	a in the I2CSI		eady for			
S	START	Start Condi This bit is s	tion et when the s	lave controller	detects a ST	ART condition	on the SCL a				
Ν	IACK	lines. This bit is not very useful as the start of the transaction can be indicated by the address match interrupt. This read-only bit is cleared when STOP condition is detected. NACK Condition This bit is set when the host responds with NACK in the byte transaction. This bit is only meaningful for slave-transmit operations. Please note: If the master returns with NACK on the byte transaction, the slave does not upload new data into the shift register. And the									
slave transmits the old data again as the next transfer, and this re-transmission continues NACK is repeated until the transmission is successful and returned with ACK. This bit is cleared when a new ACK is detected or it can be cleared by software. These four bits define the hold time in SYSCLK cycles between SDA to SCL. The I ² C specification requires for minimum of 300nsec hold time, so the condition of "SYSCLK*(HOLDT[3:0]+3) $\geq$ 300nsec hold time" equation must be met. For example, SYSCLK is 20MHz, then HOLD[3-0] should be set $\geq$ 3.								nis bit is ne I²C			

## I2CSST2 (0xDC) I2CS2 Status Register R/W (0x00)

## I2CSADR2 (0xDD) I2CS2 Slave Address 1 Register R/W (0x00)

	7	6	6 5 4 3 2 1 0									
RD	XMT		I2CADDR[6-0]									
WR	I2CSEN		SADDR2[6-0]									
12 S/	MT CSEN ADDR2[6-0] CADDR[6-0]	slave is in r Set this bit 7-bit Slave When writte When read	ecciving oper to enable the Address en, SADDR2[ I2CADDR[6	ration. I ² C slave con 6-0] stores the -0] holds the s	e slave addres	ss of the slave of the receive	e. ed slave addre	then the I ² C				

## I2CSDAT2 (0xDE) I2CS2 Data Register R/W (0x00)

7 6 5 4 3 2 1
---------------



RD	I ² C Slave Receive Data Register
WR	I ² C Slave Transmit Data Register

## I2CSADR2A (0xDF) I2CS2 Slave Address 2 Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	I2CS2AEN		-								
WR	I2CS2AEN		SADDR2A[6-0]								
2	I2CS2AEN Set this bit to enable the I ² C slave SADDR2A match.										

SADDR2A[6-0] 7-bit Slave Address

When written, SADDR2A[6-0] stores the 2nd slave address of the slave.



## 4 EUART1 with Enhanced Function of UART1

LIN-capable 16550-like EUART1 is an enhanced UART controller (EUART) with separate transmit and receive FIFO. Both transmit and receive FIFO are 15-bytes deep and can be parameterized for interrupt triggering. The addition of FIFO significantly reduces the CPU load to handle the high-speed serial interface. Transmit FIFO and receive FIFO have respective interrupt trigger levels that can be set based on optimal CPU performance. The EUART1 also has a dedicated 16-bit Baud Rate generator and thus provides an accurate baud rate under a wide range of system clock frequencies

	-			· · ·	1		1				
	7	6	5	4	3	2	1	0			
RD	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PERR	SP			
WR	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PE	SP			
E	UARTEN	Transmit a	nd Receive E	nable bit							
		Set to enable EUART2 transmit and receive functions: Transmit messages in the TX FIFO									
				sages in the F	RX FIFO.						
S	В	Stop Bit Co									
			•		enable 1 Sto	•					
N	VLS[1-0]		er of bits of a	data byte. Thi	is does not inc	clude the parit	y bit when pa	rity is			
		enabled.									
		00 - 5 bits									
		01 - 6 bits									
		10 - 7 bits									
		11 - 8 bits									
В	REAK		-		y SYNC byte.						
					ed by a SYNC			t at low for the			
					ng. It is self-c	• •	,	omploted			
				-	ART1 interrup	•		ompieteu.			
					X FIFO. The		transmission	oftor the			
			is transmitte		A FIFO. THE	uala will start	113111551011				
0	P	•	Parity Contro								
-	E/PERR		ole / Parity Er								
		•			ole parity chec	king functions	s If read PEF	R=1			
					data of RX FIF						
S	P	Parity Set									
		•		ty bit is alway	s transmitted	as 1.					

## SCON1 (0xB1) EUART1 Configuration Register R/W (0x00)

### SCON1X (0xB2) EUART1 Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	RXST	BERR	BECLRX	BECLRR	LBKEN	BERIE	-	TXPOL	
WR	-	BERR	BECLRX	BECLRR	LBKEN	BERIE	CLRFIFO	TXPOL	
RXST       Receive Status         RXST is controlled by hardware.       RXST is set by hardware when a START bit is detected.         BITERR       Bit Error Flag         BITERR is set by hardware when the received bit does not match with transmit bit, if									
BITERR is set by hardware when the received bit does not match with transmit to BERIE=1, and then this error generates an interrupt. BITERR must be cleared to BECLRX Bit Error Force Clear Transmit Enable If BECLRX=1, hardware immediately disables current transmission and clears T machines and FIFO when BITERR is set by hardware.								by software.	
В	BECLRR Bit Error Force Clear RECEIVE Enable If BECLRX=1, hardware immediately disables current reception and clears RX state machines and FIFO when BITERR is set by hardware.								
LBKEN Enable EUART Loopback Test When LBKEN=1, EUART1 enters into loopback mode, with its TX output connected to input. When in loopback mode, the corresponding MFCFG bit must be cleared to prev the TX pin output.									
В	BERIE Bit Error Interrupt Enable (1:Enable / 0:Disable)								



## IS32CS8977

Set to clear transmit/receive FIFO pointer and state machine. CLRFIFO bit is auto-cleared CLRFIFO by hardware.

TXPOL EUART output polarity

# SFIFO1 (0xB3) EUART1 FIFO Status/Control Register R/W (0x00)

	7	6	5	4	3	2		1	0			
RD		RFL[3	-0]			TF	FL[3-0]					
ΝR		RFLT[	3-0]			TF	LT[3-0]					
	RFL[3-0] RFLT[3-0]	Current Receive FIFO level. This is read-only and indicates the current receive FIFO count. Receive FIFO trigger threshold. This is write-only. RDA interrupt will be generated wh RFL[3-0] is greater than RFLT[3-0].										
		RFLT[3-0]			Descriptio	on						
		0000		trigger level =								
		0001	-	trigger level =								
		0010		trigger level =								
		0011		trigger level =								
		0100		trigger level =								
		0101		trigger level =								
		0110		trigger level =								
		0111	RX FIFO	RX FIFO trigger level = 7								
		1000	RX FIFO	RX FIFO trigger level = 8								
		1001	RX FIFO	trigger level =	: 9							
		1010	RX FIFO trigger level = 10									
		1011	RX FIFO	RX FIFO trigger level = 11								
		1100	RX FIFO	RX FIFO trigger level = 12								
		1101	RX FIFO	trigger level =	: 13							
		1110	RX FIFO	trigger level =	: 14							
		1111	Reset Re	eceive State M	achine and C	lear RX FIF	0					
т												
1	FL[3-0]		smit FIFO	evel. This is r	ead-only and	indicates th	e curren	nt trans	mit FIFO byt			
	FL[3-0] FLT[3-0]	count.	O trigger th	reshold. This	-							
		count. Transmit FIF	O trigger these than TF	reshold. This LT[3-0].	is write-only.	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is le TFLT[3-0] 0000	O trigger these than TF	reshold. This	is write-only.	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0]	O trigger thess than TF	reshold. This LT[3-0].	is write-only. Description Machine and C	TRA interru	ıpt will be		-			
		count. Transmit FIF TFL[3-0] is le TFLT[3-0] 0000	O trigger thess than TF Reset Tr TX FIFO TX FIFO	areshold. This LT[3-0]. ansmit State M trigger level = trigger level =	is write-only. Description Machine and C 1 2	TRA interru	ıpt will be		-			
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011	O trigger these than TF Reset Transform TX FIFO TX FIFO TX FIFO	areshold. This LT[3-0]. ansmit State M trigger level = trigger level = trigger level =	is write-only. Description Machine and C 1 2 3	TRA interru	ıpt will be		-			
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011 0100	O trigger th ess than TF Reset Tr TX FIFO TX FIFO TX FIFO TX FIFO	areshold. This LT[3-0]. ansmit State M trigger level = trigger level = trigger level = trigger level =	is write-only. Description Machine and C 1 2 3 4	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011	O trigger these than TF Reset Transform TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO	ansmit State N trigger level = trigger level = trigger level = trigger level = trigger level = trigger level =	is write-only. Description Machine and C 1 2 3 4 5	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011 0100	O trigger th ess than TF Reset Tr TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO	ansmit State N trigger level = trigger level = trigger level = trigger level = trigger level = trigger level = trigger level =	is write-only. Description Machine and C 1 2 3 4 5 6	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011 0100 0101	O trigger th ess than TF Reset Tr TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO	ansmit State N trigger level = trigger level = trigger level = trigger level = trigger level = trigger level =	is write-only. Description Machine and C 1 2 3 4 5 6	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011 0110 0110 0111 0110	O trigger th ess than TF Reset Tr TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO	ansmit State N trigger level = trigger level =	is write-only. Description Machine and C 1 2 3 4 5 6 7 8	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is la 0000 0001 0010 0011 0100 0101 0110 0111	O trigger th ess than TF Reset Tr TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO	ansmit State N trigger level = trigger level =	is write-only. Description Aachine and C 1 2 3 4 5 6 7 8 9	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010	O trigger th ess than TF Reset Tr. TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO	ansmit State N trigger level = trigger level =	is write-only. Description Aachine and C 1 2 3 4 5 6 7 8 9 10	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011 0110 0111 1000 1001 1010 1011	O trigger th ess than TF Reset Tr. TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO TX FIFO	ansmit State N trigger level = trigger level =	is write-only. Description Aachine and C 1 2 3 4 5 6 7 8 9 10	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010	O trigger th ess than TF Reset Tr. TX FIFO TX FIFO	ansmit State N trigger level = trigger level =	is write-only.	TRA interru	ıpt will be		·			
		count. Transmit FIF TFL[3-0] is lo TFLT[3-0] 0000 0001 0010 0011 0110 0111 1000 1001 1010 1011	O trigger th ess than TF Reset Tr TX FIFO TX FIFO	areshold. This LT[3-0]. ansmit State M trigger level = trigger level =	is write-only. Description Machine and C 1 2 3 4 5 6 7 8 9 10 11 12 13	TRA interru	ıpt will be					
		count. Transmit FIF TFL[3-0] is lo 0000 0001 0010 0011 0100 0111 0110 0111 1000 1001 1011 1010	O trigger th ess than TF Reset Tr TX FIFO TX FIFO	ansmit State N trigger level = trigger level =	is write-only.	TRA interru	ıpt will be					

## SINT1 (0xB4) EUART1 Interrupt Status/Enable Register R/W (0x00)

		7	6	5	4	3	2	1	0
--	--	---	---	---	---	---	---	---	---



RD	INTEN	TRA	RDA	RFO	RFU	TFO	FERR	TI					
WR	INTEN	TRAEN	RDAEN	RFOEN	RFUEN	TFOEN	FERREN	TIEN					
	INTEN		Enable bit. Wr										
				•	ar to disable in	terrupt. The d	efault is 0.						
	TRA/TRAEN		FIFO is ready		s haan amptia	d bolow the E	IEO throshold	Mrita "1" to					
			nis bit is set when transmit FIFO has been emptied below the FIFO threshold. Write "1" to nable interrupt. The flag is automatically cleared when the condition is absent.										
	RDA/RDAEN		eceive FIFO is ready to be read.										
			his bit is set by hardware when received FIFO exceeds the FIFO threshold. Write "1" to										
			hable interrupt. RDA will also be set when RFL < RFLT for bus idle duration longer than FLT * 16 * Baud Rate. This is to inform the software that there are still remaining unread										
			b * Baud Rate		orm the softwa	are that there	are still remain	ling unread					
			•		and writing "	D" to the bit (th	ne interrupts is	disabled					
		simultane	ously)		U	,	·						
	RFO/RFOEN		eceive FIFO Overflow Enable bit										
			This bit is set when the overflow condition of receive FIFO occurs. Write "1" to enable interrupt. The flag can be cleared by writing "0" to the bit (The interrupt is disabled										
			•	FIFO reset ac	•		enupt is disab	leu					
	RFU/RFUEN		FIFO Underflo										
					ndition of recei								
					writing "0" to th	ne bit (The inte	errupt is disab	led					
	TFO/TFOEN		• • •	FIFO reset ac v Interrupt Ena									
	II O/II OEI				lition of transn	nit FIFO occur	s. Write "1" to	enable					
					writing "0" to th	ne bit (The inte	errupt is disab	led					
				FIFO reset ac	tion.								
	FERR/FERRE	•	Error Enable b		ccurs as the by	uto io roccivod	N/rita "1" to (	anabla					
					writing "0" to								
		simultane			in ing e te								
	TI/TIEN			npletion Interru									
					he TX FIFO ar								
				abled simultan	nterrupt. The f eously.).	ay must be c	leared by Writh	ng u to the					
		,											

## SBUF1 (0xB5) EUART1 Data Buffer Register R/W (0x00)

	7	7 6 5 4 3 2 1 0								
RD	EUART1 Receive Data Register									
WR		EUART1 Transmit Data Register								

This register is the virtual data buffer register for both receiving and transmitting FIFO. When being read, it reads out the top byte of the RX FIFO; when being written, it writes into the top byte of the TX FIFO.

### SBR1L (0xB6) EUART1 Baud Rate Register Low byte R/W (0x00)

	7 6 5 4 3 2 1 0								
RD	SBR1[7:0]								
WR	SBR1[7-0]								

### SBR1H (0xB7) EUART1 Baud Rate Register High byte R/W (0x00)

	7 6 5 4 3 2 1									
RD	SBR1[15-8]									
WR	SBR1[15-8]									

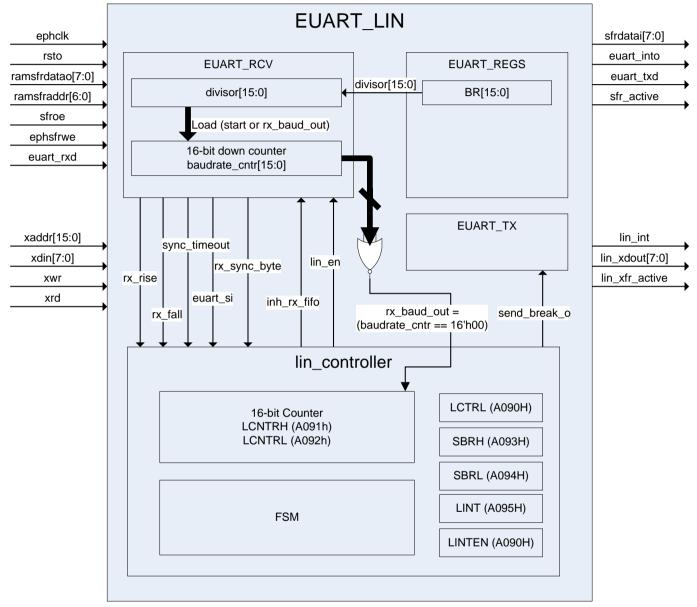
SBR1[15-0]

The Baud Rate Setting of EUART.

BUAD RATE = SYSCLK / (SBR1[15-0]+1).

### SBRK1 (0xC1) EUART1 Break Configuration Register R/W (0x00)

		7	6	5	4	3	2	1	0
ſ	RD	BRKIEN	-	RCVSPL[1-0]		BRKF	BRKSYNC	BRKLEN[1-0]	
	WR	BRKIEN	-	RCVSPL[1-0]		BRKF	BRKSYNC	BRKLEN[1-0]	




BRKIEN	BREAK Completion Interrupt Enable
	BRKIEN=1 enables EUART1 interrupt when BRK/SYNC transmission is completed
RCVSPL[1-0]	Adjust Receive Sampling Point
	00 = 50%
	01 = 62.5%
	10 = 69%
	11 = 75%
BRKF	BREAK Completion Flag
	BRKF is set by hardware when BRK/SYNC transmission completes. It must be cleared by software.
BRKSYNC	Send SYNC after Break
	If BRKSYNC=0, only the Break field is sent.
	If BRKSYNC=1, a SYNC byte is also sent after the Break field.
BRKLEN[1-0]	BREAK Length Setting
	00 = 13 BT
	01 = 14 BT
	10 = 15 BT
	11 = 16 BT



## 5 EUART2 with LIN Controller

LIN-capable 16550-like EUART2 is an enhanced UART controller (EUART) with separate transmit and receive FIFO. Both transmit and receive FIFO is 15 bytes deep and can be parameterized for interrupt triggering. The addition of FIFO significantly reduces the CPU load to handle a high-speed serial interface. Transmit FIFO and receive FIFO have respective interrupt trigger levels that can be set based on optimal CPU performance. The EUART2 has a dedicated 16-bit Baud Rate generator and thus provides an accurate baud rate under a wide range of system clock frequencies. The EUART2 also provides LIN extensions that incorporate message handling and baud-rate synchronization. The block diagram of EUART2 is shown in the following.



The following registers are used for configurations of EUART2.

## SCON2 (0xC2) UART2 Configuration Register R/W (0x00)

-	-	-	-									
	7	6	5	4	3	2	1	0				
RD	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PERR	SP				
WR	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PE	SP				
		Set to enal and store r	eceived mess			ns: Transmit	messages in t	he TX FIFO				
3	B	•	Stop Bit Control Set to enable 2 Stop bits, and clear to enable 1 Stop bit.									
V	VLS[1-0]	The numbe enabled.	The number of bits of a data byte. This does not include the parity bit when parity is enabled.									



	00 - 5 bits
	01 - 6 bits
	10 - 7 bits
	11 - 8 bits
BREAK	Break Condition Control Bit
	Set to initiate a break condition on the UART interface by holding UART output at low until
	BREAK bit is cleared.
OP	Odd/Even Parity Control Bit
PE/PERR	Parity Enable / Parity Error status
	Set to enable parity and clear to disable parity checking functions. If read, PERR=1 indicates a parity error in the current data of RX FIFO.
SP	Parity Set Control Bit
	When SP is set, the parity bit is always transmitted as 1.
	2 FIFO Status/Control Register R/W (0x00)

#### SFIF 0 7 6 5 4 3 2 1 RFL[3-0] TFL[3-0] RD WR RFLT[3-0] TFLT[3-0] RFL[3-0] Current Receive FIFO level. This is read only and indicates the current receive FIFO byte count. Receive FIFO trigger threshold. This is write-only. RDA interrupt will be generated when RFLT[3-0] RFL[3-0] is greater than RFLT[3-0]. RFLT[3-0] Description 0000 RX FIFO trigger level = 0 0001 RX FIFO trigger level = 1 0010 RX FIFO trigger level = 2 0011 RX FIFO trigger level = 3 0100 RX FIFO trigger level = 4 0101 RX FIFO trigger level = 5 0110 RX FIFO trigger level = 6 0111 RX FIFO trigger level = 7 1000 RX FIFO trigger level = 8 1001 RX FIFO trigger level = 9 RX FIFO trigger level = 10 1010 1011 RX FIFO trigger level = 11 1100 RX FIFO trigger level = 12 1101 RX FIFO trigger level = 13 1110 RX FIFO trigger level = 14 1111 Reset Receive State Machine and Clear RX FIFO Current Transmit FIFO level. This is read-only and indicates the current transmit FIFO byte TFL[3-0] count. TFLT[3-0] Transmit FIFO trigger threshold. This is write-only. TRA interrupt will be generated when TFL[3-0] is less than TFLT[3-0] TFLT[3-0] Description Reset Transmit State Machine and Clear TX FIFO 0000 0001 TX FIFO trigger level = 1 0010 TX FIFO trigger level = 2 0011 TX FIFO trigger level = 3

TX FIFO trigger level = 4

TX FIFO trigger level = 5

TX FIFO trigger level = 6

TX FIFO trigger level = 7

TX FIFO trigger level = 8

TX FIFO trigger level = 9

0100

0101

0110

0111

1000

1001



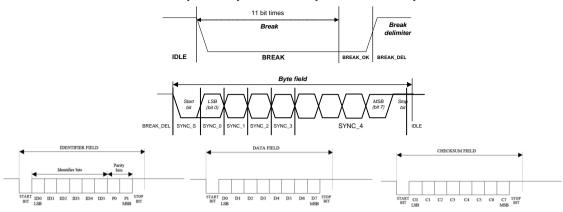
1010	TX FIFO trigger level = 10
1011	TX FIFO trigger level = 11
1100	TX FIFO trigger level = 12
1101	TX FIFO trigger level = 13
1110	TX FIFO trigger level = 14
1111	TX FIFO trigger level = 15

Receive and transmit FIFO can be reset by clear FIFO operation. This is done by setting BR[15-0]=0 and EUARTEN=0. This also clears RFO, RFU, and TFO interrupt flags without writing the interrupt register. The LIN counter LCNTR is also cleared.

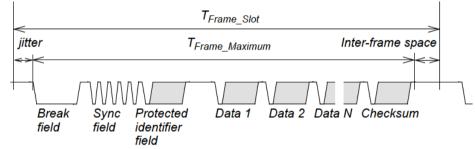
### SINT2 (0xA7) UART2 Interrupt Status/Enable Register R/W (0x00)

	-	-		_	. ,			1				
	7	6	5	4	3	2	1	0				
RD	INTEN	TRA	RDA	RFO	RFU	TFO	FERR	TI				
WR	INTEN	TRAEN	RDAEN	RFOEN	RFUEN	TFOEN	FERREN	TIEN				
	INTEN	Interrupt I	Enable bit. Wr	ite only								
				nterrupt. Clear	to disable inte	errupt. Default	is 0.					
	TRA/TRAEN		FIFO is ready									
				nsmit FIFO ha								
			enable interrupt. The flag is automatically cleared when the condition is absent. Receive FIFO is ready to be read.									
	RDA/RDAEN					and the EIE	C threaded M	lrita "1" ta				
				are when rece will also be se								
				. This is to inf								
			bytes in the Fl		-			5				
			The flag is cleared when RFL < RFLT and writing "0" to the bit (The interrupt is disabled									
		simultane										
	RFO/RFOEN		Receive FIFO Overflow Enable bit									
			This bit is set when the overflow condition of receive FIFO occurs. Write "1" to enable									
			interrupt. The flag can be cleared by writing "0" to the bit (The interrupt is disabled simultaneously.), or by FIFO reset action.									
	RFU/RFUEN		FIFO Underflo									
			This bit is set when the underflow condition of receive FIFO occurs. Write "1" to enable									
				be cleared by		he bit (The inte	errupt is disab	led				
			• • •	FIFO reset ac								
	TFO/TFOEN			v Interrupt Ena								
				overflow cond								
				be cleared by FIFO reset ac			enupi is disab	ieu				
	FERR/FERREN		Error Enable b									
		•			ccurs as the b	vte is received	I. Write "1" to e	enable				
			This bit is set when a framing error occurs as the byte is received. Write "1" to enable interrupt. The flag must be cleared by writing "0" to the bit (The interrupt is disabled									
		simultane	ously.).	-	-		-					
	TI/TIEN		•	npletion Interru	•							
			This bit is set when all messages in the TX FIFO are transmitted and thus the TX FIFO									
	becomes empty. Write "1" to enable interrupt. The flag must be cleared by writing "0" to bit (The interrupt is disabled simultaneously.).											
		`	•		eousiy.).							
	INVACI IN DIA	Data Duffa.	. D!	AL (000)								

### SBUF2 (0xA6) UART2 Data Buffer Register R/W (0x00)


	7	6	5	4	3	2	1	0		
RD	EUART2 Receive Data Register									
WR		EUART2 Transmit Data Register								

This register is the virtual data buffer register for both receive and transmit FIFO. When being read, it reads out the top byte of the RX FIFO; when being written, it writes into the top byte of the TX FIFO.


EUART2 can be configured to add LIN capability. The major enhancement of LIN includes master/slave configurations, auto baud-rate synchronization, and frame-based protocol with a header. Under LIN extension mode, all EUART2 registers and functions are still effective and operational. LIN is a single-wire bus and it requires external components to combine RX and TX signals externally. LIN is frame-based and consists of message protocols with

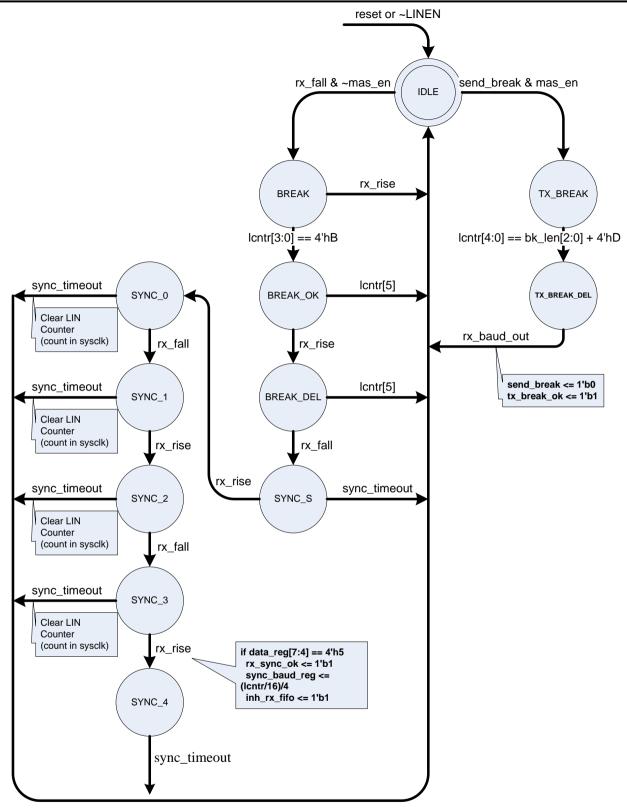


master/slave configurations. The following diagram shows the basic composition of a header message sent by the master. It starts with BREAK, the SYNC byte, ID bytes, DATA bytes, and CRC bytes.



A LIN frame structure is shown and the frame time matches the number of bits sent and has a fixed timing.




LIN bus protocol is based on frame. Each frame is partitioned into several parts as shown above. For the LIN master to initiate a frame, the software follows the following procedures:

Initiate a SBK command. (SW needs to check if the bus is in an idle state, and if there is no pending transmit data). Write "55" into TFIFO.

Write "PID" into TFIFO.

Wait for SBK to complete interrupts and then write the following transmit data if applicable. (This is optional.) The following diagram shows the Finite State Machine (FSM) of the LIN extension and is followed by registers within EUART2.







LINCTF	RL (0xA090) L	IN Status/Co	ntrol Registe	r R/W (0x00)						
	7	6	5	4	3	2	1	0		
RD	LINEN	MASEN	ASU	MASU	SBK		BL[2:0]			
WR	LINEN	MASEN	ASU	MASU	SBK		BL[2:0]			
	LINEN		le (1: Enable /	,						
					s functional wh					
			•	-	EUART2 regi	sters must be	set correctly :	0xB0 is		
			nded for SCO							
	MASEN						ction. This bit i			
		-	•	•			nging MASEN)	1-		
	ASU			•	/ 0: Disable),					
							0] with SBR[15	s-oj and issue		
	an ASUI interrupt when receiving a valid SYNC field. If ASU is 0, the LIN controller will only notice the synchronized baud rate in SBR[15-0] by									
	issuing an RSI interrupt.									
		•			T mode. ASU	capability is	based on the	e message		
		containir	ng the BREA	K and SYNC f	ields in the b	eginning.		_		
					e is performe	d on every re	eceiving fram	e, and is		
		•	frame by fran							
					YNCMD] shou	ild also be se	et to 1.			
	MASU	0	Auto Sync Up							
							o-sync update			
		received frame only. It is self-cleared when the sync update is completed. The software must set MASU again if another auto-sync operation is desired.								
			•		SYNCMD] sh		set to 1.			
	SBK			•	0: No send rec					
		LINEN an	d MASEN sho	ould be set be	fore setting SE	3K. When LIN	EN and MASE	N are both 1,		
							ant bits and 1			
		(Break Delimiter). Once SBK is set, this bit represents the "Send Break" status and								
		CANNOT be cleared by writing to "0"; instead, clearing LINEN cancels the "Send Break" action. In normal cases, SBK is cleared automatically when the transmission of Break								
			is completed.		eu automatica	ny when the t		Dieak		
	BL[2:0]		ngth Setting							
	-[]		• •	[2:0]. Default	BL[2:0] is 3'b(	000.				
			•							

## LINCNTRH (0xA091) LIN Timer Register High R/W (0xFF)

	7	6	5	4	3	2	1	0
RD	LCNTR15-8]							
WR	LINTMR[15-8]							

### LINCNTRL (0xA092) LIN Time Register Low R/W (0xFF)

	7	6	5	4	3	2	1	0	
RD		LCNTR[7-0]							
WR		LINTMR[7-0]							

LCNTR[15-0] is read-only and is an internal 16-bit counter clocked by the baud rate clock. LINTMR[15-0] is write-only and is the timer limit for LCNTR[15-0]. If MASEN=1 as LIN master mode, this timer is used to generate the Frame time base. The internal counter LCNTR[15-0] is cleared whenever a "SEND BREAK" command is executed, and when the counter reaches LINTMR [15-0] (LCNTR[15-0] >= LINTMR[15-0]), an LCNTRO interrupt is generated. Hence the software can write a Frame Time value into LINTMR and use interrupts to initiate frames. If MASEN=0 as LIN slave mode, this timer is used for determining the accumulated bus idle time. The internal counter is cleared whenever an RX transition occurs. When the internal counter reaches LINTMR[15-0],an LCNTRO interrupt is generated. The software can use this interrupt to enter sleep mode by writing the required bus idling time into LINTMR[15-0].



LINSBRH (0xA093) EUART/LIN Baud Rate Register High byte R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		SBR[15-8]							
WR		BR[15-8]							

### LINSBRL (0xA094) EUART/LIN Baud Rate Register Low byte R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	SBR[7:0]									
WR		BR[7-0]								
SBR[15-0] The acquired Baud Rate under LIN protocol. This is read-only. SBR[15-0] is the acquired baud rate setting from the last received valid sync byte. SBR								/te. SBR is		

meaningful only in LIN-Slave mode.

BR[15-0] The Baud Rate Setting of EUART/LIN. This is write-only.

BUAD RATE = SYSCLK /( BR[15-0]+1).

When a slave receives a BREAK followed by a valid SYNC field, an RSI interrupt is generated and the acquired baud rate from the SYNC field is stored in SBR[15-0]. The acquired baud rate: BAUD RATE = SYSCLK/(SBR[15-0]+1). The software can just update this acquired value SBR[15-0] into BR[15-0] to achieve synchronization with the master. If Auto-Sync Update (ASU) register bit is enabled under LIN slave mode, LIN controller will automatically perform the update of BR[15-0] with SBR[15-0] and issue another ASUI interrupt when a valid SYNC field is received.

	7	6	5	4	3	2	1	0				
RD	RXST	BITERR	LSTAT	LIDLE	ASUI	SBKI	RSI	LCNTRO				
WR	LBKEN	BITERR	BECLRX	BECLRR	ASUI	SBKI	RSI	LCNTRO				
	RXST	Receive	Status									
			RXST is set by hardware when a START bit is detected. It is cleared when the STO									
			condition is detected.									
	LBKEN		Enable EUART Loopback Test When LBKEN=1, EUART2 enters into loopback mode, with its TX output connected to RX									
			Vhen in loopba									
		must be		<i>i i</i>				5				
	LBKEN		k Enable									
	BITERR	Bit Error	0									
			is set by hard 1, this mismate									
	BECLRX		Force Clear T			pl. DITERKI	iust be cleare	u by software.				
	DECENT		If BECLRX=1, hardware immediately disables current transmission and clears TX state									
		machines and FIFO when BITERR is set by hardware.										
	BECLRR		Force Clear R									
			RX=1, hardwar				and clears RX	state				
	LSTAT		s and FIFO wh Status bit (1: F									
	LSTAT		= 1 indicates th		,		tate					
	LIDLE		1 when the LI		· · /			ler or data				
			his bit is read-									
	ASUI		nc Updated co	•	• •	,						
			is set when a									
	SBKI		dated with SBI					the bit.				
	SDNI		N=1, Send Bre is set when S					the hit				
		•	N=0, Receive		•		y writing i t					
			is set when a				d by a rising e	dge of the				
		•	al. It must be		•		, ,	C C				
	RSI		Sync Complet									
			is set when a	valid Sync by	te is received f	ollowing a Bre	eak. It must be	cleared by				
	LCNTRO	•	1" to the bit. nter Overflow	Interrupt hit (1	· Set / 0· Clear	·)						
	LONTINO			interrupt bit (1		<i>)</i> •						

## LININT (0xA095) LIN Interrupt Flag Register R/W (0x00)



This flag is set when the LIN counter reaches 0xFFFF. It must be cleared by writing "1" to the bit.

### LININTEN (0xA096) LIN Interrupt Enable Register R/W (0x00)

	7	6	5	4	2	1	0			
RD	LINTEN	BERIE	SYNCMD	SYNCVD	ASUIE	SBKIE	RSIE	LCNTRIE		
WR	LINTEN	BERIE	SYNCMD	EUARTOPL	ASUIE	SBKIE	RSIE	LCNTRIE		
	LINTEN BERIE SYNCMD	Set to en Bit Error Synchror SYNCME deviation error of ro SYNCME newly act Although recomme The new And follor 1. With 2. The sam 4 E 3. For 0] us auto	able all LIN in Interrupt Enab- nization Mode D=0 will only a s from the cur eception. D=1 will autom quired baud ra- under this set anded to set th baud rate can wing condition in +/- 50% of incoming Bi e time: A. Break le B. Break le the applicati sing the lowe matically up	ble (1: Enable / Selection Ilow automatic rent baud rate atically synchrate. SYNCMD tring, the tolera- be SUCCESSFu be successfu is must be mere of the current reak Length ength is less on with mult est value. Sir dated with a	flags should b (0: Disable) synchronization setting. A large ronize and upd should be set ant range of de as close as the lly synchronized that the same t to baud rate s satisfies the than 32 current than 253952 i-baud rates, nee after eac newly synch	etting. following two ent baud rate system cloc software sh ch LIN transa pronized valu	rate within +/- 6 deviation ma ate register wi her ASU or MA up to +/- 50% rate. are received of c conditions bit times k ould set the action, LINBF ie, software	6% by cause an th the SU is 1. , it is correctly. at the LINBR[15- R[15-0] is needs to		
	SYNCVD	SYNCVD SYNCVD is updated by the hardware when SYNCMD=1. SYNCVD is set to 1 if the auto- synchronization is successful.								
	EUARTOPL	EUART/L	IN output pola		nit output pola	rit∨.				
	ASUIE SBKIE	Auto-Syn If MASEN	c Update Inte N=1, Send Bre	rrupt Enable ( ak Completior Break Comple	1: Enable / 0: [ n Interrupt Ena	Disable) ble.				
	RSIEReceive Sync Completion Interrupt Enable (1: Enable / 0: Disable)LCNTRIELIN Counter Overflow Interrupt Enable (1: Enable / 0: Disable)									

### LINTCON (0xA0B0h) LIN Timeout Configuration Register R/W (0x00)

			<b>e</b> eiliga alle	in Regioter 14				
	7	6	5	4	3	2	1	0
RD	RXDTO[0]	LINRXFEN	RXTOWKE	RXDD_F	TXDD_F	RXDDEN	TXDDEN	
WR         RXDTO[0]         LINRXFEN         RXTOWKE         TXTOWKE         RXDD_F         TXDD_F							RXDDEN	TXDDEN
	RXDTO[0] LINRXFEN	Combine LIN Break LINRXFE conditions LINRXFE	inant Timeout with RXDTOH State Exit wh N=1 configure S. N=0 disables t must take care	and RXDTOL en RXD domi s the automat	nant fault occu ic BREAK stat exit (does not	urs. te exit under F		
RXDDENRXD Dominant Fault Interrupt EnableRXDD_FRXD Dominant Fault Interrupt FlagRXDD_F is set to 1 by hardware and must be cleared by software.								
TXDDENTXD Dominant Fault Interrupt EnableTXDD_FTXD Dominant Fault Interrupt FlagTXDD_F is set to 1 by hardware and must be cleared by software.								



TXD Dominant Timeout Wakeup Enable TXTOWKE **RXTOWKE** 

**RXD Dominant Timeout Wakeup Enable** 

### TXDTOL (0xA0B1h) LIN TXD Dominant Timeout LOW Registers R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	TXDTO[7:0]								
WR		TXDTO[7:0]							

## TXDTOH (0xA0B2h) LIN TXD Dominant Timeout HIGH Registers R/W (0x00)

	7	7 6 5 4 3 2 1 0							
RD		TXDTO[15:8]							
WR		TXDTO[15:8]							
	TXDTO TXD Dominant Timeout (TXDTO +1) * IOSCCLK								

## RXDTOL (0xA0B3h) LIN RXD Dominant Timeout LOW Registers R/W (0x00)

	7	7 6 5 4 3 2 1 0									
RD		RXDTO[8-1]									
WR		RXDTO[8:1]									

## RXDTOH (0xA0B4h) LIN RXD Dominant Timeout HIGH Registers R/W (0x00)

RD RXDTO[16-9]	0	7 6 5 4 3 2 1 0								
		RD								
WR RXDTO[16-9]	RXDTO[16-9]								WR	

RXD Dominant Timeout (RXDTO[16-0] +1) * IOSCCLK RXDTO

BSDCLRL (0xA0B5h) Bus Stuck Dominant Clear Width Low Registers R/W (0x00)

	7 6 5 4 3 2 1							0	
RD		BSDCLR[7-0]							
WR		BSDCLR[7-0]							

### BSDCLRH (0xA0B6h) Bus Stuck Dominant Clear Width High Registers R/W (0x00)

	7 6 5 4 3 2 1 0								
RD	BSDCLR[15-8]								
WR	BSDCLR[15-8]								

Bus Stuck Dominant Clear Time (BSDCLR[15-0] +1) * SOSC32KHz BSDCLR

## BSDACT (0xA0B8h) Bus Stuck Dominant Active Width Registers R/W (0x00)

	7	7 6 5 4 3 2 1 0							
RD	BSDACT[7-0]								
WR	BSDACT[7:0]								
	BSDACT Bus Stuck Dominant Active Time (BSDACT[7-0] +1) * SOSC32KHz								

Bus Stuck Dominant Active Time (BSDACT[7-0] +1) * SOSC32KHz

## BSDWKC (0xA0B7h) Bus Stuck Dominant Fault Wakeup Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	BSDWF	BFWF	BSDWEN	BFWEN		WKFL	.T[3-0]				
WR	BSDWF	BFWF	BSDWEN	BFWEN		WKFL	_T[3-0]				
WKFLT[3-0]LIN Wakeup time (WKFLT[3-0]+1) * SOSC32KHzBFWENLIN Wakeup/Interrupt EnableBFWFLIN Wakeup Interrupt FlagBFWF is set to 1 by hardware and must be cleared by software.											
	BSDWEN LIN Bus Stuck Wakeup Interrupt Enable BSDWF LIN Bus Stuck Wakeup Interrupt Flag										



#### Serial Peripheral Interface (SPI) 6

The Serial Peripheral Interface (SPI) is an enhanced synchronous serial hardware, which is compatible with Motorola's SPI specifications. The SPI Controller includes 4-bytes FIFO for both transmit and receive. SPI Interface uses Master-Out-Slave-In (MOSI), Master-In-Slave-Out (MISO), Serial Clock (SCK), and Slave Select (SSN). SSN is low active and only meaningful in slave mode.

7	6	5		4	3	2	1		0
SPIE	SPEN	MST	R	CPOL	CPHA	SCKE	SICKF	LT	SSNFLT
SPIE	SPEN	MST	R	CPOL	CPHA	SCKE	SICKF	LT	SSNFLT
SPIE	SPI inter	ace Inter	rrupt [	Enable bit			ł		
SPEN	SPI inter	ace Ena	ble bi	t					
MSTR	SPI Mast	er/Slave	Swite	h. The bit is	set for Master a	and clear for S	Slave.		
CPOL					nfigure the SCK	to stay HIGH	while the	9 SPI	interface is
СРНА	Clock Ph and clear	ase Con to shift o	trol bi output	t: When CF t data at the	falling edge of S	SCK. When C	POL=1, s	et to	shift output
SCKE	Clock Se	lection b	it in M	laster Mode			U	U	
				determined	by the combinat	ions of CPOL	and CPF	HA se	ettings shown
	in the foll	owing ta	Die.			e		Г	DATAOUT
	CPOL	СРНА	S	Slave			CKE=1	-	Edge
	0	0	Risi		Rising edge			F	alling edge
	0	1	Falli	ng edge	Falling edge	Rising	edge	R	ising edge
	1	0			Falling edge		-		ising edge
		•						F	alling edge
		5							
				-	als SDI and SCK				
		-	· R/W	(0x00)					
7	6	5		4	3	2	1		0
ICNT1	ICNT0	FCL	R	-	SPR[2]	SPR[1]	SPR[(	)]	DIR
ICNT1	ICNT0	FCL	R	-	SPR[2]	SPR[1]	SPR[(	)]	DIR
VR       ICNT1       ICNT0       FCLR       -       SPR[2]       SPR[1]       SPR[0]       DIR         ICNT1, ICNT0       FIFO Byte Count Threshold       This sets the FIFO threshold for generating SPI interrupts.       00 -the interrupt is generated after 1 byte is sent or received;       01 -the interrupt is generated after 2 bytes are sent or received;       10 -the interrupt is generated after 2 bytes are sent or received;       10 -the interrupt is generated after 3 bytes are sent or received;       11 -the interrupt is generated after 4 bytes are sent or received;         FCLR       FIFO Clear/Reset       Set to clear and reset transmit and receive FIFO.       SPR[2-0]       SPI Clock Rate Setting. This is used to control the SCK clock rate of the SPI interface.         000 -SCK = SYSCLK/4;       001 - SCK = SYSCLK/4;       001 - SCK = SYSCLK/8;       011 - SCK = SYSCLK/16;         011 - SCK = SYSCLK/16;       011 - SCK = SYSCLK/16;       011 - SCK = SYSCLK/16;       011 - SCK = SYSCLK/16;									
	7 SPIE SPIE SPEN MSTR CPOL CPHA SCKE SSNFLT SICKFLT (0xA2) SPI Mo 7 ICNT1 ICNT1 ICNT1	7       6         SPIE       SPEN         SPIE       SPEN         SPIE       SPI interf         SPEN       SPI interf         SPEN       SPI interf         MSTR       SPI Mast         CPOL       SPI interf         idling and       CPOL         CPHA       Clock Ph         and clear       data at th         SCKE       Clock Se         Set to de       Clear to the         CPOL       0         1       1         SSNFLT       Enable n         SICKFLT       Enable n         SICKFLT       Enable n         GoxA2) SPI Mode Control I       1         7       6         ICNT1       ICNT0         ICNT1, ICNT0       FIFO Byt         This sets       00 -the in         01 -the in       11 -the in         10 -the in       11 -the in         FCLR       FIFO Cle	7       6       5         SPIE       SPEN       MST         SPIE       SPEN       MST         SPIE       SPI interface Inte       SPI interface Ena         SPEN       SPI interface Polatiding and clear to       SPI interface Polatiding and clear to         CPOL       SPI interface Polatiding and clear to shift of data at the falling       SCKE       Clock Phase Con and clear to shift of data at the falling         SCKE       Clock Selection b       Set to delay 0.5 p       Clear to use the r         The sampling phatin the following ta       CPOL       CPHA         0       0       1       1         SSNFLT       Enable noise filter       SICKFLT         SSNFLT       Enable noise filter       5         SICKFLT       Enable noise filter       5         Mode       Control Register       7         7       6       5         ICNT1       ICNT0       FCL         ICNT1, ICNT0       FIFO Byte Count       This sets the FIFO         00 - the interrupt in       10 - the interrupt in       11 - the interrupt in         10 - the interrupt in       11 - the interrupt in       11 - the interrupt in         11 - the interrupt in       5       5       5	SPIE       SPEN       MSTR         SPIE       SPEN       MSTR         SPIE       SPI interface Interrupt If         SPEN       SPI interface Enable bit         SPR       SPI interface Enable bit         SPR       SPI interface Polarity bit         MSTR       SPI Master/Slave Switch         CPOL       SPI interface Polarity bit         CPOL       SPI interface Polarity bit         MSTR       SPI interface Polarity bit         CPOL       SPI interface Polarity bit         CPOL       SPI interface Polarity bit         CPOL       SPI interface Polarity bit         MSTR       SPI interface Polarity bit         CPOL       SPI interface Polarity bit         Master/Slave Switch       Clock Phase Control bit         SCKE       Clock Selection bit in M         Set to delay 0.5 periods       Clear to use the norma         The sampling phase is       in the following table.         Vertex       CPOL       CPHA         SSNFLT       Enable noise filter funct         SICKFLT       Enable noise filter funct         SICKFLT       Enable noise filter funct         MAX2)       SPI Mode Control Register R/W         7       6       5	7       6       5       4         SPIE       SPEN       MSTR       CPOL         SPIE       SPEN       MSTR       CPOL         SPIE       SPI interface Interrupt Enable bit       SPI master/Slave Switch. The bit is         SPEN       SPI interface Enable bit       SPI master/Slave Switch. The bit is         MSTR       SPI Master/Slave Switch. The bit is         CPOL       SPI interface Polarity bit: Set to co-         idling and clear to keep it LOW.         CPHA       Clock Phase Control bit: When CP-         and clear to shift output data at the         data at the falling edge of SCK and         SCKE       Clock Selection bit in Master Mode         Set to delay 0.5 periods of SCK to         Clear to use the normal edge of SC         The sampling phase is determined         in the following table.         CPOL       CPHA         Slave       0         0       1         SIGKFLT       Enable noise filter function on signal         SICKFLT       Enable noise filter function on signal         SICKFLT       Enable noise filter function on signal         SICKFLT       Enable noise filter function on signal         MOME       5       4         IC	7       6       5       4       3         SPIE       SPEN       MSTR       CPOL       CPHA         SPIE       SPEN       MSTR       CPOL       CPHA         SPIE       SPI interface Interrupt Enable bit       SPI interface Enable bit         SPEN       SPI interface Polarity bit:       Set to configure the SCK idling and clear to keep it LOW.         CPOL       SPI interface Polarity bit:       Set to configure the SCK idling and clear to shift output data at the falling edge of S data at the falling edge of SCK and clear to shift output data at the falling edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to use the normal edge of SCK to sample the input Clear to	SPIE         SPEN         MSTR         CPOL         CPHA         SCKE           SPIE         SPEN         MSTR         CPOL         CPHA         SCKE           SPIE         SPI interface Interrupt Enable bit         SPEN         SPI interface Enable bit           MSTR         SPI Master/Slave Switch. The bit is set for Master and clear for SCPOL         SPI interface Polarity bit: Set to configure the SCK to stay HIGH idling and clear to keep it LOW.           CPHA         Clock Phase Control bit: When CPOL=0, set to shift output data and clear to shift output data at the falling edge of SCK and clear to shift output data at the falling edge of SCK and clear to shift output data.           Clear to use the normal edge of SCK to sample the input data.         Clear to use the normal edge of SCK to sample the input data.           Clear to use the normal edge of SCK to sample the input data.         Clear to use the normal edge of SCK to sample the input data.           Clear to use the normal edge of SCK to sample the input data.         Clear to use the normal edge of SCK to sample the input data.           Clear to use the normal edge of SCK to sample the input data.         The sampling phase is determined by the combinations of CPOL in the following table.           VEPA         DATAIN Edge         DATAIN Edge         Rising edge         Falling edge         Rising edge         Falling edge         Rising edge         Falling edge         Rising edge         Falling edge         Fal	SPIE         SPEN         MSTR         CPOL         CPHA         SCKE         SICKF           SPIE         SPEN         MSTR         CPOL         CPHA         SCKE         SICKF           SPIE         SPI interface Interrupt Enable bit         SPI interface Enable bit         SPI interface Enable bit         SPI interface Enable bit           SPIN         SPI interface Polarity bit:         Set to configure the SCK to stay HIGH while the idling and clear to keep it LOW.           CPOL         SPI interface Polarity bit:         When CPOL=0, set to shift output data at the rising edge of SCK and clear to shift output data at the rising of data at the falling edge of SCK and clear to shift output data.           CPHA         Clock Phase Control bit:         Mean CPOL=0, set to shift output data at the rising of data at the falling edge of SCK to sample the input data.           Clear to use the normal edge of SCK to sample the input data.         Clear to use the normal edge of SCK to sample the input data.           The sampling phase is determined by the combinations of CPOL and CPH in the following table.         DATAIN Edge         Master, SCKE=1           0         0         Rising edge         Rising edge         Rising edge           1         0         Falling edge         Rising edge         Rising edge           1         1         Rising edge         Rising edge         Rising edge <td< td=""><td>SPIE         SPEN         MSTR         CPOL         CPHA         SCKE         SICKFLT           SPIE         SPEN         MSTR         CPOL         CPHA         SCKE         SICKFLT           SPIE         SPI interface Interrupt Enable bit         SCKE         SICKFLT         SICKFLT           SPIE         SPI interface Interrupt Enable bit         SPI interface Enable bit         SCKE         SICKFLT           SPI interface Polarity bit:         Set to configure the SCK to stay HIGH while the SPI idling and clear to keep it LOW.         CPOL         SPI interface Polarity bit:         Set to configure the SCK to stay HIGH while the SPI idling and clear to shift output data at the rising edge of SCK and clear to shift output data at the rising edge and clear to shift output data at the rising edge SCKE         Clock Phase Control bit:         When CPOL=0, set to shift output data.         The sampling phase is determined by the combinations of CPOL and CPHA set to data ut the falling edge of SCK to sample the input data.         Clear to use the normal edge of SCK to sample the input data.         The sampling phase is determined by the combinations of CPOL and CPHA set in the following table.         DATAIN Edge         DATAIN Edge         Image: SCKE=1         <t< td=""></t<></td></td<>	SPIE         SPEN         MSTR         CPOL         CPHA         SCKE         SICKFLT           SPIE         SPEN         MSTR         CPOL         CPHA         SCKE         SICKFLT           SPIE         SPI interface Interrupt Enable bit         SCKE         SICKFLT         SICKFLT           SPIE         SPI interface Interrupt Enable bit         SPI interface Enable bit         SCKE         SICKFLT           SPI interface Polarity bit:         Set to configure the SCK to stay HIGH while the SPI idling and clear to keep it LOW.         CPOL         SPI interface Polarity bit:         Set to configure the SCK to stay HIGH while the SPI idling and clear to shift output data at the rising edge of SCK and clear to shift output data at the rising edge and clear to shift output data at the rising edge SCKE         Clock Phase Control bit:         When CPOL=0, set to shift output data.         The sampling phase is determined by the combinations of CPOL and CPHA set to data ut the falling edge of SCK to sample the input data.         Clear to use the normal edge of SCK to sample the input data.         The sampling phase is determined by the combinations of CPOL and CPHA set in the following table.         DATAIN Edge         DATAIN Edge         Image: SCKE=1         Image: SCKE=1 <t< td=""></t<>

## SPICR (0xA1) SPI Configuration Register R/W (0b001000xx)

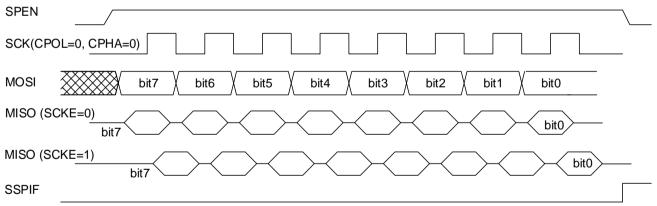
	7	6	5	4	3	2	1	0			
RD	ICNT1	ICNT0	FCLR	-	SPR[2]	SPR[1]	SPR[0]	DIR			
WR	ICNT1	ICNT0	FCLR	-	SPR[2]	SPR[1]	SPR[0]	DIR			
	ICNT1, ICNT	0 FIFO Byte	e Count Thres	shold							
				•	erating SPI inte	•					
					byte is sent o						
					bytes are sen						
			• •		bytes are sen						
			11 – the interrupt is generated after 4 bytes are sent or received.								
	FCLR		FIFO Clear/Reset Set to clear and reset transmit and receive FIFO.								
		••••••									
	SPR[2-0]		•		to control the	SCK CIOCK ra	te of the SPI II	nterface.			
			$\zeta = SYSCLK/4$								
			K = SYSCLK/								
			K = SYSCLK/								
			K = SYSCLK/	-							
			K = SYSCLK/								
			K = SYSCLK/	-							
			K = SYSCLK/	,							
			K = SYSCLK/		e clock rate sh	all he less the					
	DIR	Transfer		num SPI Slave	e clock rate sh	all be less tha	III 51 50LK/6.				
	DIK			first format							
		Set DIR=	1 to use MSB	-mst ionnat.							



Set DIR=0 to use LSB-first format.

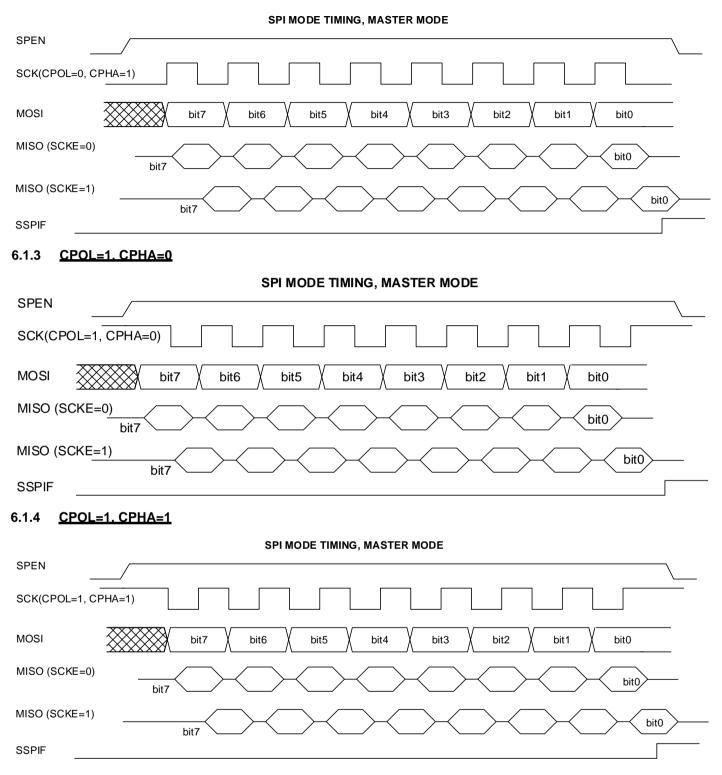
## SPIST (0xA3) SPI Status Register R/W (0x00)

	7	6	5	4	3	2	1	0				
RD	SSPIF	ROVR	TOVR	TUDR	RFULL	REMPT	TFULL	TEMPT				
WR	SSPIF	ROVR	TOVR	TUDR	-	-	-	-				
	SSPIF		SPI Interrupt Flag bit. Set by hardware to indicate the completion of data transfer. Clear by assigning this bit to 0 or disabling SPI.									
	ROVR	Receive FIFO-overrun Error Flag bit. When Receiver FIFO Full Status occurs and SPI receives new data, ROVR is set and generates an interrupt. Clear by assigning this bit to 0 or disabling SPI.										
	TOVR	data is w	Transmit FIFO-overrun Error Flag bit. When Transfers FIFO Full Status occurs and new data is written, TOVR is set and generates an interrupt. Clear by assigning this bit to 0 or disabling SPI.									
	TUDR		sion occur, TU		hen the Trans generates an							
	RFULL REMPT TFULL TEMPT	Receive FIFO Full Status bit. Set when receiver FIFO is full. Read-only. Receive FIFO Empty Status bit. Set when receiver FIFO is empty. Read-only. Transmitter FIFO Full Status bit. Set when transfer FIFO is full. Read-only. Transmitter FIF0 Empty Status bit. Set when transfer FIFO is empty. Read-only.										


## SPIDATA (0xA4) SPI Data Register R/W (0xXX)

	7	6	5	4	3	2	1	0		
RD		SPI Receive Data Register								
WR		SPI Transmit Data Register								

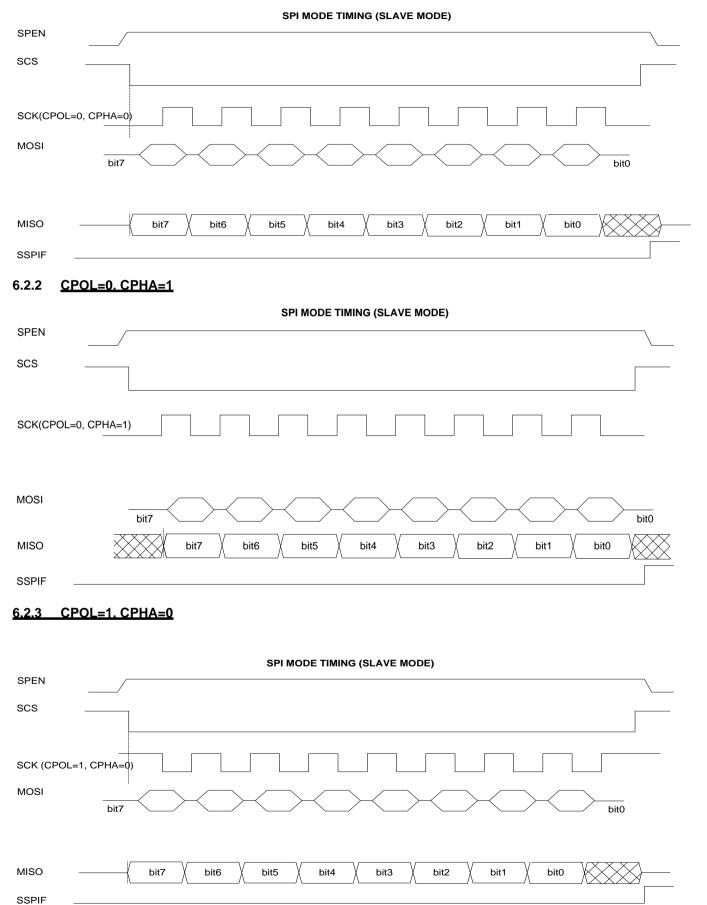
## 6.1 SPI Master Timing Illustration


## 6.1.1 CPOL=0. CPHA=0

### SPI MODE TIMING, MASTER MODE

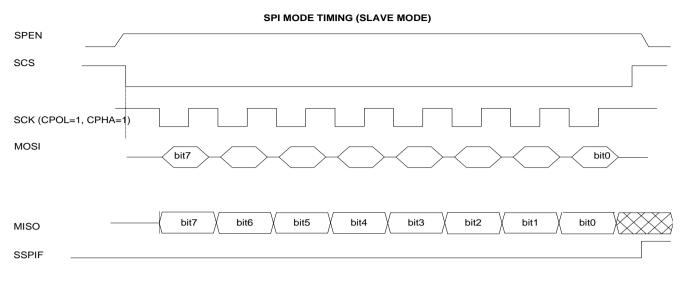





## 6.1.2 <u>CPOL=0. CPHA=1</u>



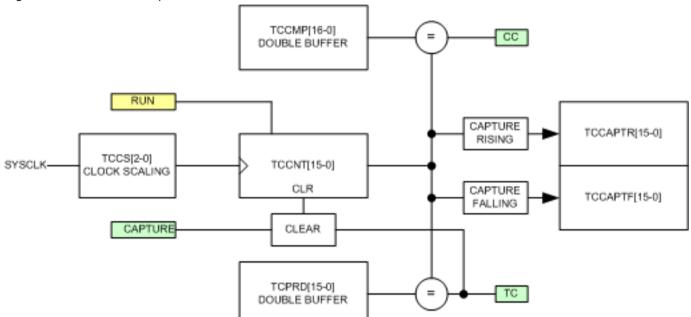



## 6.2 SPI Slave Timing Illustration

## 6.2.1 CPOL=0. CPHA=0



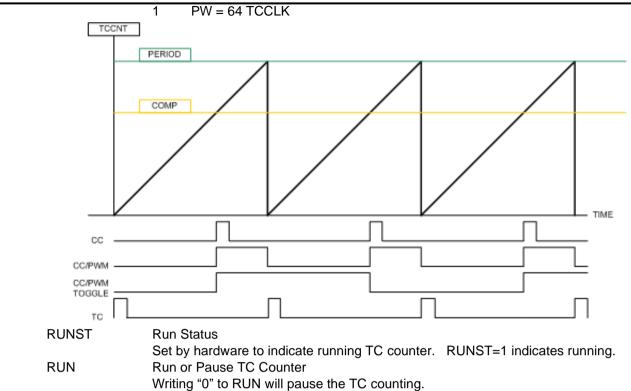



## 6.2.4 <u>CPOL=1. CPHA=1</u>





## 7 <u>Timer with Compare/Capture and Quadrature Encoder</u>


The Timer/Capture unit is based on a 16-bit counter with pre-scalable SYSCLK as a counting clock. The count starts from 0 and reloads when reaching TC (terminal count). TC is met when the count equals the period value. Along the counting, the count value is compared with COMP and when they match, a CC condition is met. Note that both PERIOD and COMP registers are double-buffered, and therefore any new value is updated after the current period ends. TC and CC can be used for triggering an interrupt, and also routed to GPIO. The output pulse width of TC and CC is programmable. For CC, it can also be configured as a PWM output. There are two data registers for capturing events. The capture event can be from external signals like GPIO (XCAPT) with an edge selection option, from QE block, or triggered by software. The software can also decide whether to reset the counter or not. This option gives a simpler calculation of consecutive capture evens without any offset. The following block diagram shows the TCC implementations.



## TCCFG1 (0xA050h) TCC Configuration Register 1 R/W (0x00)

	7	6	5	4	3	2	1	0
RD	TCEN		TCCS[2-0]		CCSE	EL[1-0]	TCSEL	RUNST
WR	TCEN		TCCS[2-0]		CCSEL[1-0]		TCSEL	RUN
	TCEN	and CC ar TC = 1 ena in pause m TC Clock \$ 000 SYS 001 SYS 010 SYS 100 SYS 101 SYS 101 SYS	ables TC. In e also set to leables TC. RU node if RUN=0 Scaling SCLK SCLK/2 SCLK/4 SCLK/16 SCLK/16 SCLK/32 SCLK/64	ow. IN bit also nee	eds to set to 1			
	CCSEL[1-0]	CC Output 00 PW 01 PW 10 PW 11 PW TC Output		(CC = low whe	en TCCNT < C ggles when TC			NT >= CMP)





Writing "1" to RUN will resume the TC counting.

## TCCFG2 (0xA051h) TC Configuration Register 2 R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	IDXST	PHAST	PHBST	TCPOL	CCPOL	TCF	CCF
WR	RSTTC	-	-	-	TCPOL	CCPOL	TCF	CCF

RSTTC	Reset TC Writing RSTTC "1" will reset the TC counter and capture registers. Once the counter is
	cleared, the TC counter is put in STOP mode. To resume counting, the RUN bit must be set
	by software.
IDXST	Index Input real-time status
PHAST	PHA input real-time status
PHBST	PHB input real-time status
TCPOL	TC output polarity
CCPOL	CC output polarity
TCF	Terminal Count Interrupt Flag
	TCF is set to "1" by hardware when terminal count occurs. TCF must be cleared by writing
	"O".
CCF	Compare Match Interrupt Flag
	CCF is set to "1" by hardware when a compare match occurs. CCF must be cleared by writing "0".

### TCCFG3 (0xA052h) TC Configuration Register 3 R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	IENTC	IENCC	QECEN	CPTCLR	XCREN	XCFEN	-	-			
WR	IENTC	IENCC	IENCC QECEN CPTCLR XCREN XCFEN SWCPTR SWCPTF								
 (	ENTC ENCC QECEN CPTCLR	Enable Cle If CPTCLR	ot Enable e Enable uses QE outp ear Counter af =1, the TCCN	ter Capture			t. This allows	continuous			



	If CPTCLR=0, the capture event does not affect the TCCNT counting.
XCREN	External Rising Edge Capture Enable
	XCREN=1 uses external input rising edge as a capture event.
XCFEN	External Falling Edge Capture Enable
	XCFEN=1 uses external input falling edge as a capture event.
SWCPTR	Software Capture R
	Writing "1" to SWCPTR will generate a capture event and capture the count value into
	TCCPTR register. This bit is cleared by hardware.
SWCPTF	Software Capture F
	Writing "1" to SWCPTF will generate a capture event and capture the count value into
	TCCPTF register. This bit is cleared by hardware.

Please note: All capture sources are not mutually exclusive, i.e., several capture sources can coexist.

### TCPRDL (0xA054h) TC Period Register Low Double Buffer R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		TCCNT[7-0]								
WR		TCPRD[7-0]								

### TCPRDH (0xA055h) TC Period Register High Double Buffer R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	TCCNT[15-8]									
WR		TCPRD[15-8]								

Note: Writing of PERIOD register must be done high byte first, then low byte. The writing takes effect at low byte writing. When reading the TCPRD register, it returns the current count value TCCNT[15-0].

## TCCMPL (0xA056h) TC Compare Register Low Double Buffer R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		TCCMP[7-0]								
WR		TCCMP[7-0]								

### TCCMPH (0xA057h) TC Compare Register High Double Buffer R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		TCCMP[15-8]								
WR		TCCMP[15-8]								

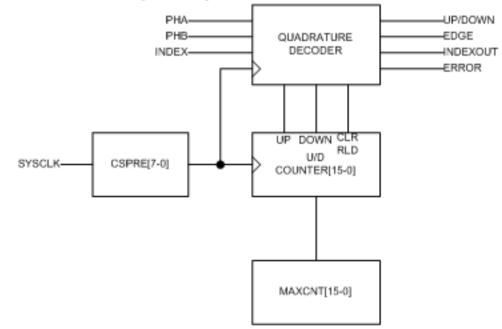
Note: Writing of COMPARE register must be done high byte first, then low byte. The writing takes effect at low byte writing.

### TCCPTRL (0xA060h) TC Capture Register R Low RO (0x00)

	7	6	5	4	3	2	1	0		
RD		TCCPTR[7-0]								
WR		-								

### TCCPTRH (0xA061h) TC Capture Register R High RO (0x00)

	7	6	5	4	3	2	1	0		
RD	TCCPTR[15-8]									
WR		-								




T	TCCPTFL (0xA062h) TC Capture Register F Low RO (0x00)										
		7	7 6 5 4 3 2 1 0								
	RD	TCCPTF[7-0]									
	WR	-									

## TCCPTFH (0xA063h) TC Capture Register F High RO (0x00)

	7	6	5	4	3	2	1	0	
RD	TCCPTF[15-8]								
WR		-							

The quadrature encoder is clocked by a scaled SYSCLK, and has three external inputs through GPIO multifunctions. The three inputs include two signals of 90 degrees phase difference, PHA and PHB, and an index indicating the terminal of the encoder. QE can function as an independent function block and also can be configured to couple with TCC and use TCC to calculate the speed information of the encoder. Using TCC to capture the TCC count value via the Index input of QE or terminal count of QE, the speed of QE input can be calculated. The QE unit implementation is shown in the following block diagram.



QECNT is a 16-bit UP/DOWN counter with a configurable counting range; the range is specified by MAXCNT. The counter reset/reload can be triggered externally through the INDEX input.

## QECFG1 (0xA070h) TCC Configuration Register 1 R/W (0x00)

	7	6	5	4	3	2	1	0
RD	QEMO	QEMODE[1-0]		QECS[1-0]		DBCS[2-0]		
WR	QEMODE[1-0]		QECS[1-0]		SWAP	DBCS[2-0]		

QEMODE[1-0] QE Mode

- 00 Disable QE
- 01 1X mode
- 10 2X mode
- 11 4X mode



Channel A Channel B	
Up Pulsed Count	

QECS[1-0]	QE C	Clock Scaling
	00	SYSCLK/4
	01	SYSCLK/16
	10	SYSCLK/64
	11	SYSCLK/256
SWAP	Swap	o PHA and PHB
DBCS[2-0]	De-B	ounce Clock Scaling
	000	Disable de-bounce
	001	SYSCLK/2
	010	SYSCLK/4
	011	SYSCLK/8
	100	SYSCLK/16
	101	SYSCLK/64
	110	SYSCLK/128
	111	SY1SCLK/256
	De-b	ounce time is three DBCS period.
00 (0v A 074h) OE	Confi	aurotion Dogistor 2 D/M/ (0x00)

### QECFG2 (0xA071h) QE Configuration Register 2 R/W (0x00)

201 02	· · ·	-	-		1	-						
	7	6	5	4	3	2	1	0				
RD	DIR	ERRF	RLDN	Л[1-0]	TCF	IDXF	DIRF	CNTF				
WR	-	ERRF	RLDN	/[1-0]	TCF	IDXF	DIRF	CNTF				
[	DIR	Direction S	Status									
			P/DOWN dire	ction								
E	ERRF	Phase Erro	Phase Error Flag ERRF is set to 1 by hardware if PHA and PHB change value at the same time. ERRF mus									
				lware if PHA a	and PHB chan	ige value at th	e same time.	ERRF must				
			by software.									
F	RLDM[1-0]		er Reload Moo	-								
					vill count up/d	own between	0x0000 or 0x	FFFF				
			= 01 Reload	•								
			ad QECNT=0									
				,	n Index==1 &8	k DOWN						
			RLDM[1-0] = 10 Reload using TC event.									
					NT==QEMAX							
					n QECNT==0							
				-	dex and TC ev							
				nd TC events	and reload wh	ichever occur	s earlier.					
٦ ٦	TCF		nterrupt Flag									
				when a TC ev	ent interrupt h	as occurred.	TCF needs to	be cleared				
	<b>D</b> )/ <b>-</b>	by writing "										
I	DXF		nt Interrupt Fla	0								
				when an Inde	ex event interr	upt has occur	red. IDXF nee	eds to be				
r	DIRF	cleared by	-	Interrupt Elec								
L	JIRF		hange Event			vont interrupt	has assured					
			e cleared by v		tion change e	vent interrupt	has occurred.	DIKF				
(	CNTF		nge Event Int	-								
,			•		count change	event interrur	t has occurre					
			e cleared by v		count change	event interrup						
				initing o								



### QECFG3 (0xA072h) QE Configuration Register 3 R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	IENTC	IENIDX	IENDIR	IENCNT	IENERR	IDXEN	IDXM	1[1-0]		
WR	IENTC	IENIDX	IENDIR	IENCNT	IENERR	IDXEN	IDXM	1[1-0]		
I	IENTC Interrupt Enable for TC TC condition for QE is defined as the following conditions 1. QECNT=QEMAX when UP 2. OECNT=0 when down									
 	2. QECNT=0 when down     IENIDX Interrupt Enable for Index event     IENDIR Interrupt Enable for Direction Change     IENCNT Interrupt Enable for any QECNT change     IDXEN Index Input Enable     IDXEN									
IDXEN=0 gates out the external INDEX input and is gated to 0. IDXEN=1 allows external INDEX. IDXM[1-0] Index Match Selection, this is applicable only for X2 and X4 modes. $00 = up \text{ phase } 00 \rightarrow 10 \text{ down phase } 10 \rightarrow 00$ $01 = up \text{ phase } 10 \rightarrow 11 \text{ down phase } 11 \rightarrow 10$ $10 = up \text{ phase } 01 \rightarrow 00 \text{ down phase } 00 \rightarrow 01$										
		11 = up ph	ase 11 → 01	down phase (	)1 🗲 11					

### QECNTL (0xA074h) QE Counter Low R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		QECNT[7-0]									
WR		QECNTINI[7-0]									

### QECNTH (0xA075h) QE Counter High R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	QECNT[15-8]									
WR	QECNTINI[15-8]									

Reading QECNT will return the current QE counter value. Writing QECNT will set the current count value. Writing QECNT is allowed only when QE is in disabled state.

### QEMAXL (0xA076h) QE Maximum Counter Low R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		QEMAX[7-0]									
WR		QEMAX[7-0]									

### QEMAXH (0xA077h) QE Maximum Counter High R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		QEMAX[15-8]									
WR		QEMAX[15-8]									

QEMAX holds the maximum count of the QE counter. When QEMAX is reached, a TC event is triggered and QE counter is reloaded.



### 8 PWM Controller

PWM controller provides programmable 6 channels 12/10/8 bit PWM center-aligned duty cycle outputs. The counting clock of PWM is programmable and the base frequency of the PWM is just the counting clock divided by 8192/2048/512 for 12/10/8 bit configurations due to center-alignment counting. PWM outputs are multiplexed with GPIO ports.

			•									
	7	6	5	4	3	2	1	0				
RD	PWMEN	MOD	MODE[1-0]			CS[4-0]						
WR	PWMEN	MOD	E[1-0]	CS[4-0]								
	PWMEN NODE[1-0]	PWMEN=0 PWMEN=1	allows norm olution Select it	ounter, reset t al running ope			nel outputs ar	∍ forced to 0.				
C	CS[4-0]	The counti (PWM_Clo (PWM_Clo	ck = (countin) ck = (countin)	caling YSCLK / (CS) g clock / 8192 g clock / 2048 g clock / 512	) for 12-bit co ) for 10-bit co	nfiguration)						

### PWMCFG1 (0xA080h) PWM Clock Scaling Setting Register R/W (0x00)

### PWMCFG2 (0xA081h) PWM Interrupt Enable and Flag R1egister R/W (0x08)

	7	6	5	4	3	2	1	0				
RD	ZTRGEN	CTRGEN	ZINTEN	CINTEN	SYNCEN	-	ZINTF	CINTF				
WR	ZTRGEN	CTRGEN	TRGEN ZINTEN CINTEN SYNCEN - ZINTF CINTF									
C	ZTRGEN       Zero ADC Trigger Enable         CTRGEN       Center ADC Trigger Enable         ZINTEN       Zero Interrupt Enable         ZINTEN=1 allows PWM Controller to generate interrupt when counter is 0.											
C	ONTEN	Center Interrupt Enable CINTEN=1 allows PWM Controller to generate interrupt when counter is at the mid value.										
S	SYNCEN	SYNCEN=	SYNCEN=1, allow all channel duty to be updated by writing SYNC=1. SYNCEN=0, duty double buffer update immediately at next PWM start.									
Z	ZINTF	Zero Interr ZINTF is se	Zero Interrupt Flag ZINTF is set to 1 by hardware to indicate a Zero interrupt has occurred. ZINTF must be cleared by software.									
C	CINTF	Center Interrupt Flag CINTF is set to 1 by hardware to indicate a Center interrupt has occurred. CINTF must be cleared by software.										

### PWMCFG3 (0xA082h) PWM Configuration 3 Register R/W (0x00)

	7	6	5	4	3	2	1	0				
RD	PRSEN	SYNC		POL[5-0]								
WR	PRSEN	SYNC		POL[5-0]								
	YRSEN SYNC	PRSEN=1 effective w be affected Channel S Writing SY (ZINTF = 1 SYNC is cl	ay to reduce l cycle by cyc ynchronize NC=1 will cau ). The purpos eared by hard	pseudo rando EMI for outpur le, but the ave use the loadin se of this is to dware after re	t. When PRS erage duty cyc g of duty regis synchronize t loading is con	EN=1, the ins cle remains the ster on the new he timing of a	tantaneous du e same. kt PWM count II the PWM ch	t=0 event				



POL[5-0]

Channel Polarity Control

POL[J] = 0 for normal polarity and POL[J]=1 for reverse polarity.

There are 6 PWMxDTY registers to define the duty cycle of each PWM channel. If PWMxDTY = 0, the output is 0. If PWMxDTY = maximum value, the output duty cycle is maximum to (period – 1)/period. PWMxDTY is always double-buffered and is loaded to duty cycle comparator when the SYNC bit is set and the current counting cycle is completed. For 8-bit, only the PWMxDTY[7-0] is used; for 10-bit, PWMxDTY[9-0] is used; for 12-bit, PWMxDTY[11-0] is used. If PWMEN=0 (PWM is disabled), then writing to PWMxDTY register is immediately valid.

### PWM0DTYL (0xA084h) PWM0 Duty Register L R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		PWM0DTY[7-0]									
WR		PWM0DTY[7-0]									

### PWM0DTYH (0xA085h) PWM0 Duty Register H R/W (0x00)

	7	6	5	4	3	2	1	0
RD		-	-	-	PWM0DTY[11-8]			
WR	-	-	-	-	PWM0DTY[11-8]			

### PWM1DTYL (0xA086h) PWM1 Duty Register L R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		PWM1DTY[7-0]								
WR		PWM1DTY[7-0]								

### PWM1DTYH (0xA087h) PWM1 Duty Register H R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	PWM1DTY[11-8]			
WR	-	-	-	-	PWM1DTY[11-8]			

### PWM2DTYL (0xA088h) PWM2 Duty Register L R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		PWM2DTY[7-0]								
WR		PWM2DTY[7-0]								

### PWM2DTYH (0xA089h) PWM2 Duty Register H R/W (0x00)

		, ,	, 0	· /				
	7	6	5	4	3	2	1	0
RD	-	-	-	-	PWM2DTY[11-8]			
WR	-	-	-	-	PWM2DTY[11-8]			

### PWM3DTYL (0xA08Ah) PWM3 Duty Register L R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		PWM3DTY[7-0]								
WR		PWM3DTY[7-0]								

### PWM3DTYH (0xA08Bh) PWM3 Duty Register H R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	PWM3DTY[11-8]			
WR	-	-	-	-	PWM3DTY[11-8]			

### PWM4DTYL (0xA08Ch) PWM3 Duty Register L R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		PWM4DTY[7-0]								
WR	PWM4DTY[7-0]									



### PWM4DTYH (0xA08Dh) PWM3 Duty Register H R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	PWM4DTY[11-8]			
WR	-	-	-	-	PWM4DTY[11-8]			

### PWM5DTYL (0xA08Eh) PWM5 Duty Register LR/W (0x00)

	7	6	5	4	3	2	1	0		
RD		PWM5DTY[7-0]								
WR		PWM5DTY[7-0]								

### PWM5DTYH (0xA08Fh) PWM5 Duty Register H R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	-	-	-	-	PWM5DTY[11-8]				
WR	-	-	-	-	PWM5DTY[11-8]				



#### **PWM8** Controller 9

PWM8 is an 8-bit PWM generator with 16 channel outputs. The main purpose of PWM8 is for controlling LED lighting. The even channel outputs are left adjusted and odd channel outputs are right adjusted. The duty registers are double-buffered and the new values are updated at the start of the new PWM cycle. It is also possible to synchronize the update of all the channels through SYNC control.

### PWM8CF (0xA04Ch) PWM8 Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	PWM8EN	MODE	-	SYNCEN	-	-	TINTE	ZINTE	
WR	PWM8EN	MODE	MODE - SYNCEN TINTE ZINTE						
N	PWM8EN MODE SYNCEN	PWM8EN= 0 after finis PWM8EN= PWM Mode MODE=0, s MODE=1, s	hing the curre 1 allows norr 2 Select select full off. select full on.	e counter, resets ent PWM cycle nal running op annel duties t	e. peration of PW	/M controller.	·	are forced to	
	SYNCEN=0, duty double buffer is updated immediately at next PWM start.								

### PWM8CS (0xA04Dh) PWM8 Clock Scaling Setting Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		CS[7-0]								
WR		CS[7-0]								

### PWM8INT (0xA04Eh) PWM8 SYNC and Interrupt Flag Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	SYNC	-	-	-	-	-	TINTF	ZINTF
WR	SYNC	-	-	-	-	-	TINTF	ZINTF
S	SYNC Synchronize I			ty				

Writing SYNC=1 will trigger a synchronized update of PWM duty for the next PWM cycle. SYNC is self-cleared when the update is completed.

TINTF Trigger Interrupt Flag TINTF is set to 1 by hardware to indicate a Trigger interrupt has occurred. TINTF must be cleared by software. ZINTF Zero Interrupt Flag ZINTF is set to 1 by hardware to indicate a Zero interrupt has occurred. ZINTF must be cleared by software.

### PWM8TRG (0xA04Fh) PWM Trigger Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	PWMTRG[7-0]								
WR		PWMTRG[7-0]							

**PWMTRG** 

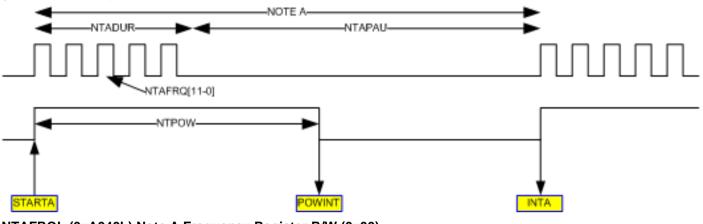
Trigger pointer setting Always uses left aligned.

PWMDTY0 (0xA0A0h) PWM Channel 0 Duty Register R/W (0x00)

	7 6 5 4 3 2 1 0										
RD	PWMDTY0[7-0]										
WR	PWMDTY0[7-0]										



VMDTY	′1 (0xA0A1h)	PWM Chan	nel 1 Duty Re	gister R/W (0)	k00)					
	7	6	5	4	3	2	1	0		
RD				PWMD	FY1[7-0]					
WR				PWMD	FY1[7-0]					
VMDTY	′2 (0xA0A2h)	PWM Chan	nel 2 Duty Re	gister R/W (0	<b>k00)</b>					
	7	6	5	4	3	2	1	0		
RD		I		PWMD	[Y2[7-0]		_			
WR				PWMD	FY2[7-0]					
VMDTY	/3 (0xA0A3h)	PWM Chan	nel 3 Duty Re	gister R/W (0)	k00)					
	7	6	5	4	3	2	1	0		
RD				PWMD	[Y3[7-0]					
WR				PWMD	FY3[7-0]					
VMDTY	/4 (0xA0A4h)	PWM Chan	nel 4 Duty Re	gister R/W (0)	<b>k00)</b>					
	7	6	5	4	3	2	1	0		
RD			<u> </u>	PWMD	[Y4[7-0]	1		1		
WR		PWMDTY4[7-0]								
VMDTY	/5 (0xA0A5h)	PWM Chan	nel 5 Duty Re	gister R/W (0)	k00)					
	7	6	5	4	3	2	1	0		
RD		_		PWMD	[Y5[7-0]			_		
WR					[Y5[7-0]					
	/6 (0xA06h) P	WM Chann	el 6 Duty Regi							
	7	6	5	4	3	2	1	0		
RD				PWMD	[Y6[7-0]					
WR					[Y6[7-0]					
	/7 (0xΔ0Δ7h)	PWM Chan	nel 7 Duty Re	aister R/W (0)	x00)					
	7	6	5	4	3	2	1	0		
RD		Ū			[ [Y7[7-0]	_	•			
WR					[[ 0] [Y7[7-0]					
	/8 (0xA0A8h)	PWM Chan	nel 8 Duty Re							
	7	6	5	4	3	2	1	0		
RD					[ [Y8[7-0]		<u> </u>			
WR					[7-0]					
	- 9 (0xΔ0Δ9h)	PWM Chan	nel 9 Duty Re							
	7	6	5	4	3	2	1	0		
RD	· ·			-	ГҮ9[7-0]		1 '	U U		
WR					FY9[7-0]					
	 /10 /0×808 84									
	-	-	nnel 10 Duty	-	. ,	2	1	0		
		0	5			2		U		
חס					V10[7 0]					
	7	6	5	4	3	2	1	0		
RD WR					Y10[7-0] Y10[7-0]					




20311										
11 (0xA0AB	n) PWM Chan	nel 11 Duty l	Register R/W	(0x00)						
7	6	5	4	3	2	1	0			
			PWMDT	Y11[7-0]						
	PWMDTY11[7-0]									
12 (0xA0ACI	n) PWM Chan	nel 12 Duty l	Register R/W	(0x00)						
7	6	5	4	3	2	1	0			
			PWMDT	Y12[7-0]						
			PWMDT	Y12[7-0]						
13 (0xA0ADł	n) PWM Chan	nel 13 Duty l	Register R/W	(0x00)						
7	6	5	4	3	2	1	0			
			PWMDT	Y13[7-0]						
			PWMDT	Y13[7-0]						
14 (0xA0AEh	n) PWM Chan	nel 14 Duty F	Register R/W	(0x00)						
7	6	5	4	3	2	1	0			
			PWMDT	Y14[7-0]						
			PWMDT	Y14[7-0]						
15 (0xA0AFh	) PWM Chan	nel 15 Duty F	Register R/W	(0x00)						
7	6	5	4	3	2	1	0			
			PWMDT	Y15[7-0]						
	PWMDTY15[7-0]									
	11 (0xA0ABH 7 12 (0xA0ACH 7 13 (0xA0ACH 7 14 (0xA0AEH 7 15 (0xA0AFH	11 (0xA0ABh) PWM Chan         7       6         12 (0xA0ACh) PWM Chan         7       6         13 (0xA0ADh) PWM Chan         7       6         14 (0xA0AEh) PWM Chan         7       6         14 (0xA0AEh) PWM Chan         7       6         15 (0xA0AFh) PWM Chan	11 (0xA0ABh) PWM Channel 11 Duty I           7         6         5           12 (0xA0ACh) PWM Channel 12 Duty I           7         6         5           12 (0xA0ACh) PWM Channel 12 Duty I           7         6         5           13 (0xA0ADh) PWM Channel 13 Duty I           7         6         5           13 (0xA0ADh) PWM Channel 13 Duty I           7         6         5           14 (0xA0AEh) PWM Channel 14 Duty F           7         6         5           14 (0xA0AEh) PWM Channel 14 Duty F           7         6         5           15 (0xA0AFh) PWM Channel 15 Duty F	11 (0xA0ABh) PWM Channel 11 Duty Register R/W           7         6         5         4           7         6         5         4           PWMDT         PWMDT           PWMDT         PWMDT           12 (0xA0ACh) PWM Channel 12 Duty Register R/W         7         6         5         4           7         6         5         4         PWMDT           7         6         5         4           7         6         5         4           7         6         5         4           7         6         5         4           7         6         5         4           7         6         5         4           7         6         5         4           7         6         5         4           7         6         5         4           PWMDT         PWMDT         PWMDT         PWMDT           7         6         5         4           7         6         5         4           9WMDT         PWMDT         PWMDT         PWMDT	11 (0xA0ABh) PWM Channel 11 Duty Register R/W (0x00)           7         6         5         4         3           PWMDTY11[7-0]         PWMDTY11[7-0]         PWMDTY11[7-0]         PWMDTY11[7-0]           12 (0xA0ACh) PWM Channel 12 Duty Register R/W (0x00)         7         6         5         4         3           7         6         5         4         3         PWMDTY11[7-0]         12 (0xA0ACh) PWM Channel 12 Duty Register R/W (0x00)         7         6         5         4         3           7         6         5         4         3         9WMDTY12[7-0]         13 (0xA0ADh) PWM Channel 13 Duty Register R/W (0x00)         7         6         5         4         3           7         6         5         4         3         9WMDTY13[7-0]         PWMDTY13[7-0]           14 (0xA0AEh) PWM Channel 14 Duty Register R/W (0x00)         7         6         5         4         3           7         6         5         4         3         9WMDTY14[7-0]         9WMDTY14[7-0]           15 (0xA0AFh) PWM Channel 15 Duty Register R/W (0x00)         7         6         5         4         3           7         6         5         4         3         9WMDTY14[7-0]         9WMDTY15[7-0] <td>11 (0xA0ABh) PWM Channel 11 Duty Register R/W (0x00)         7       6       5       4       3       2         PWMDTY11[7-0]         PWMDTY11[7-0]         12 (0xA0ACh) PWM Channel 12 Duty Register R/W (0x00)         7       6       5       4       3       2         PWMDTY11[7-0]         12 (0xA0ACh) PWM Channel 12 Duty Register R/W (0x00)         7       6       5       4       3       2         PWMDTY12[7-0]         TOWDTY12[7-0]         13 (0xA0ADh) PWM Channel 13 Duty Register R/W (0x00)         7       6       5       4       3       2         PWMDTY13[7-0]         PWMDTY13[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY15[7-0]</td> <td>11 (0xA0ABh) PWM Channel 11 Duty Register R/W (0x00)         7       6       5       4       3       2       1         PWMDTY11[7-0]         PWMDTY11[7-0]         PWMDTY11[7-0]         12 (0xA0ACh) PWM Channel 12 Duty Register R/W (0x00)         7       6       5       4       3       2       1         PWMDTY12[7-0]         PWMDTY12[7-0]         PWMDTY12[7-0]         13 (0xA0ADh) PWM Channel 13 Duty Register R/W (0x00)         7       6       5       4       3       2       1         PWMDTY13[7-0]         PWMDTY13[7-0]         PWMDTY14[7-0]         PWMDTY15[7-0]</td>	11 (0xA0ABh) PWM Channel 11 Duty Register R/W (0x00)         7       6       5       4       3       2         PWMDTY11[7-0]         PWMDTY11[7-0]         12 (0xA0ACh) PWM Channel 12 Duty Register R/W (0x00)         7       6       5       4       3       2         PWMDTY11[7-0]         12 (0xA0ACh) PWM Channel 12 Duty Register R/W (0x00)         7       6       5       4       3       2         PWMDTY12[7-0]         TOWDTY12[7-0]         13 (0xA0ADh) PWM Channel 13 Duty Register R/W (0x00)         7       6       5       4       3       2         PWMDTY13[7-0]         PWMDTY13[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY14[7-0]         PWMDTY15[7-0]	11 (0xA0ABh) PWM Channel 11 Duty Register R/W (0x00)         7       6       5       4       3       2       1         PWMDTY11[7-0]         PWMDTY11[7-0]         PWMDTY11[7-0]         12 (0xA0ACh) PWM Channel 12 Duty Register R/W (0x00)         7       6       5       4       3       2       1         PWMDTY12[7-0]         PWMDTY12[7-0]         PWMDTY12[7-0]         13 (0xA0ADh) PWM Channel 13 Duty Register R/W (0x00)         7       6       5       4       3       2       1         PWMDTY13[7-0]         PWMDTY13[7-0]         PWMDTY14[7-0]         PWMDTY15[7-0]			



### 10 Buzzer and Melody Controller

The buzzer and melody controller can be used to generate a simple buzzer sound or single-tone melody. It contains a two-note Ping-Pong buffer, each with programmable tone frequency, and a duration/pause timer. The tone frequency is derived from SYSCLK divided by either 32 or 64, and the tone frequency is generated with a resolution of 12-bit to support precision tone generation with a wide octave span. The duration/pause timers can be programmed in 1ms/2ms/4ms/8ms steps. The two notes can be played sequentially once, or can be played in Ping-Pong styles for melody. A POW (Power on Width) timer is also included with the same time steps. POW timer can be used to generate external power control of the buzzer element. POW timer is started when either note A or B is started.



### NTAFRQL (0xA040h) Note A Frequency Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		NTAFRQ[7-0]								
WR		NTAFRQ[7-0]								

### NTAFRQH (0xA041h) Note A Frequency Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD		-		-	NTAFRQ[11-8]			
WR		-		-		NTAFR	Q[11-8]	

Tone frequency is SYSCLK / (32 or 64) / (NTAFRQ[11-0]+1).

### NTADUR (0xA042h) Note A Duration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		NTADUR[7-0]								
WR		NTADUR[7-0]								

Tone duration is TU * NTADUR[7-0]

### NTAPAU (0xA043h) Note A Pause Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		NTAPAU[7-0]							
WR		NTAPAU[7-0]							

Tone pause is TU * NTAPAU[7-0]

### NTBFRQL (0xA044h) Note B Frequency Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		NTBFRQ[7-0]								
WR		NTBFRQ[7-0]								



### NTBFRQH (0xA045h) Note B Frequency Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD		-		-		NTBFR	2 1 NTBFRQ[11-8] NTBFRQ[11-8]	
WR		-		-	NTBFRQ[11-8]			

### NTBDUR (0xA046h) Note B Duration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD				NTBDU	JR[7-0]			
WR				NTBDL	JR[7-0]			

### NTBPAU (0xA047h) Note B Pause Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD				NTBP/	AU[7-0]			
WR				NTBP	AU[7-0]			

### NTPOW (0xA049h) Note Power On Window Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD				NTPO	W [7-0]			
WR				NTPO	W [7-0]			

NTPOW defines a timer after either STARTA or STARTB. It uses the same time unit as duration and pause. When the timer expires, it generates an interrupt by setting INTFP bit.

### NTTU (0xA04Ah) Note Time Unit Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	TU[	1-0]	-	TBASE	-	-	INTEPOW	INTFP
WR	TU[	1-0]	-	TBASE	-	-	INTEPOW	INTFP

	- L	- 1		-			-	
٦	FU[1-0]	Time Unit						
				unit for durati				
		SOSC32KI	Iz and is not	dependent on	tone frequen	cy setting. The	e tone unit is a	as follows.
		00 = 1mse	C					
		01 = 2mse	C					
		10 = 4mse	C					
		11 = 8mse	C					
٦	FBASE	Tone Base	Frequency S	elect				
		TBASE=0	uses SYSCLk	K/32 as base				
		TBASE=1	uses SYSCLk	K/64 as base				
I	NTEPOW	POW Time	r Interrupt En	able				
I	NTFP	POW Inter	rupt Flag					
		INTFP is se	et by hardwar	e when POW	timer expires.	It must be cl	eared by softw	vare.

### BZCFG (0xA048h) Buzzer Configure Register R/W (0x00)

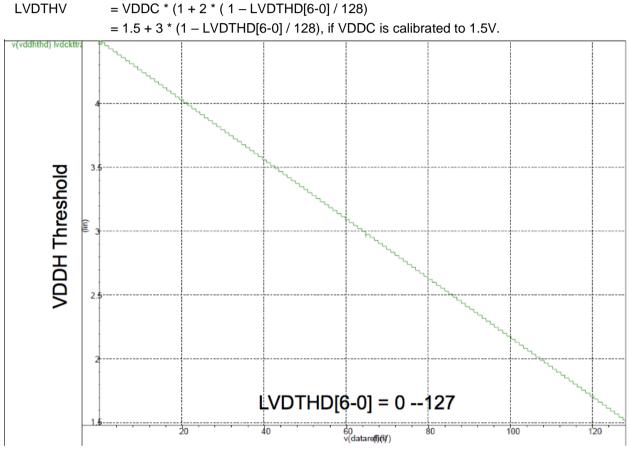
	7	6	5	4	3	2	1	0		
RD	BZEN	BZPOL INTENB INTENA INTFB INTFA BUSYB BUS								
WR	BZEN	BZPOL	BZPOL INTENB INTENA INTFB INTFA STARTB STAR							
В	ZEN ZPOL NTENB	BZEN=1 er BZEN=0 di BZOUT Po BZPOL=1 1 BZPOL=0 1 Note B End	nables the bus sables the bus larity Setting for BZOUT inv for normal pol d Interrupt Ena enables the r	zzer controlle verted arity able	r.	terrupt is trigg	gered when no	ote B playing		



2000011	
INTENA	Note A End Interrupt Enable
	INTENA =1 enables the note A end interrupt. The interrupt is triggered when note A playing
	is completed.
INTFB	Note B End Interrupt Flag
	INTFB is set to 1 by hardware if INTENB=1 and Note B playing completes. INTFB needs to
	be cleared by writing 0.
INTFA	Note A End Interrupt Flag
	INTFA is set to 1 by hardware if INTENA=1 and Note A playing completes. INTFA needs to
	be cleared by writing 0.
STARTB	Note B Start Command
	Writing STARTB=1 initiates a session output on the buzzer. Writing 0 to STARTB has no
	effect.
	STARTB is self-cleared when the note is completed.
STARTA	Note A Start Command
	Writing STARTA=1 initiates a session output on the buzzer. Writing 0 to STARTA has no
	effect.
	STARTA is self-cleared when the note is completed.
*** Note if STA	RTA and STARTB are set to 1 at the same time, then Note A is played first followed by Note B.
	Software can do this for a simple two-notes melody.
BUSYB	Note B is playing busy Status
	BUSYB is set to 1 by hardware when the output is active playing note B.
BUSYA	Note A is playing busy Status
	BUSYA is set to 1 by hardware when the output is active playing note A.



### 11 Core Regulator and Low Voltage Detection


An on-chip serial regulator converts VDD into VDDC for internal circuit supply voltage. Typical value for VDDC is 1.5V at normal mode. In sleep mode, a backup regulator with typical value of 1.42V supplies VDDC. The VDDC can be trimmed and the calibrated trim value for 1.5V is stored in IFB by the manufacturer.

### REGTRM (0xA000h) Regulator Trim Register R/W (0x80) TB protected

	7	6	5	4	3	2	1	0
RD				REGTE	RM[7-0]			
WR				REGTE	RM[7-0]			

### 11.1 Supply Low Voltage Detection (LVD)

The supply Low Voltage Detection (LVD) circuit detects VDD < VTH condition and can be used to generate an interrupt or reset condition. LVD defaults to disabled state to save power. An enabled LVD circuit consumes about 100uA to 200uA. The LVDTHD[6-0] sets the compare threshold according to the following equation when LVDTHV is the detection voltage.



LVDCFG (A010h) Supply Low Voltage Detection Configuration Register R/W (0x08) TB Protected except bit 0 LVTIF

	7	6	5	4	3	2	1	0		
RD	LVDEN	LVREN	LVTEN	LVDFLTEN	RSTNFLEN	-	-	LVTIF		
WR	LVDEN	LVREN								
	VDEN VREN	LVR Enabl reset.	LVD Enable bit. Set to turn on supply voltage detection circuits. LVR Enable bit. LVREN = 1 allows low voltage detection conditions to cause a system reset.							
-	VTEN VDFLTEN	LVD Filter LVDFLTEN	LVT Enable bit. LVTEN = 1 allows low voltage detect condition to generate an interrupt. LVD Filter Enable LVDFLTEN = 1 enables a noise filter on the supply detection circuits. The filter is set at around 30usec.							
R	STNFLEN	RSTN Acti	around 30usec. RSTN Active Analog Filter Enable							



RSTNFLEN = 1 enables an analog noise filter on the RSTN input pad active detection circuits. The filter is set at around 4usec. This is further filtered by a digital circuit to filter out any noise less than 4msec.

LVTIF

Low Voltage Detect Interrupt Flag

LVTIF is set by hardware when LVD detection occurs and must be cleared by software.

### LVDTHD (A011h) Supply Low Voltage Detection Threshold Register R/W (0bx1111111) TB Protected

	7	6	5	4	3	2	1	0
RD	-	LVDTHD6	LVDTHD5	LVDTHD4	LVDTHD3	LVDTHD2	LVDTHD1	LVDTHD0
WR	-	LVDTHD6	LVDTHD5	LVDTHD4	LVDTHD3	LVDTHD2	LVDTHD1	LVDTHD0

LVDTHD = 0x00 will set the detection threshold at its maximum, and LVDTHD = 0x7F will set the detection threshold at its minimum.

### LVDHYS (A012h) Supply Low Voltage Detection Threshold Hysteresis Register R/W (0x00) TB Protected

	7	6	5	4	3	2	1	0
RD	LVDHYEN	LVDHYS6	LVDHYS5	LVDHYS4	LVDHYS3	LVDHYS2	LVDHYS1	LVDHYS0
WR	LVDHYEN	LVDHYS6	LVDHYS5	LVDHYS4	LVDHYS3	LVDHYS2	LVDHYS1	LVDHYS0

To ensure a solid Low Voltage detection, a digital controlled hysteresis is used. If LVDHYEN = 1, when LVD is asserted a new threshold, it is defined by LVDHYS[6-0] instead of LVDTHD[6-0]. In typical applications, LVDHYS[6-0] should be set to be smaller than LVDTHD[6-0] such that recovery voltage is higher than the low voltage detection voltage.



### 12 IOSC and SOSC

### 12.1 IOSC 16MHz/32MHz

An on-chip 16MHz/32MHz Oscillator with low-temperature coefficient provides the system clock to the CPU and other logic. IOSC uses VDDC as the power supply and can be calibrated and trimmed. The accuracy of the frequency is +/- 2% within the operating conditions. This oscillator is stopped and enters into standby mode when CPU is in STOP/SLEEP mode and resumes oscillation when CPU wakes up.

### IOSCITRM (0xA001h) IOSC Coarse Trim Register R/W (0x01) TB Protected

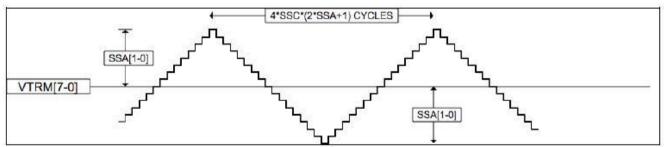
7			3	2	1	0	
RD	SSC[3-0] SSA[1-0] ITRM[1-0]						1[1-0]
WR							1[1-0]
						·	

### IOSCVTRM (0xA002h) IOSC Fine Trim Register R/W (0x80) TB Protected

	7	6	5	4	3	2	1	0		
RD		IOSCVTRM[7-0]								
WR		IOSCVTRM[7-0]								

This register provides fine trimming of the IOSC frequency. The higher the value of IOSCVTRM, the lower the frequency is.

The manufacturer trim value is stored in IFB and is trimmed to 16MHz. The user program provides the freedom to set the IOSC at a preferred frequency as long as the program is able to calibrate the frequency. Once set, the IOSC frequency has an accuracy deviation within +/- 2% over the operating conditions. The following lists the range of the typical IOSC frequency for each trimming setting.


ITRM[1:0] = 2'b11, IOSC=27.4-36.8MHz

ITRM[1:0] = 2'b10, IOSC=25.5-34.3MHz

ITRM[1:0] = 2'b01, IOSC=14.1—19.2MHz

ITRM[1:0] = 2'b00, IOSC=12.2-16.5MHz

A hardware Spread Spectrum can be enabled for the IOSC. This is controlled by SSC[3-0]. When SSC[3-0] = 0, the spread spectrum is disabled, and IOSC functions normally as a fixed-frequency oscillator. If SSC[3-0] is not 0, then Spread Spectrum is enabled and IOSC frequency is swept according to the setting of SSC[3-0] and SSA[1-0]. The spread is achieved by varying the actual VTRM output to the oscillator circuit., and thus effectively changing the oscillation frequency. The effect of SSC[3-0] and SSA[1-0] is shown in the following graph.



When Spread Spectrum is enabled, the actual controlling output to IOSC is VTRM[7-0] +/- SSA. This is shown in the graph above as the bold curve. The above example shows SSA[1:0] = 01, and the deviation is +/- 8. SSC[3-0] defines the update time in IOSC cycles. Then we can calculate the period of a complete sweep is 4 * SSC * (2 * SSA+1) IOSC cycles, and we can obtain the sweep frequency from this period. When SS is enabled, the frequency of IOSC varies according to time and setting, and therefore the accuracy of IOSC frequency cannot be guaranteed. Please also note that VTRMOUT is VTRM[7-0] +/- SSA but is bounded by 0 and 255. Therefore, for a linear non-clipped sweep, VTRM[7-0] needs to be within the range of SSA ~ (256-SSA), for example, SSA[10] = 01, then SSA is



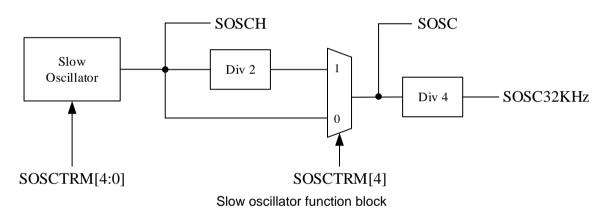
8. VTRM[7-0] should be in the range of 8 to 248 to prevent the sweep from being clipped. As Spread Spectrum suggests, the total EMI energy is not reduced, but the energy is spread over a wider frequency range. It is recommended that SS usage should be carefully evaluated and the setting of spread amplitude and the sweep frequency should be chosen carefully to reduce the EMI effect.

### 12.2 SOSC

An ultra-low power slow oscillator of 128KHz/256KHz is available as a wake-up or sleep mode system clock. SOSC is never powered down and consumes about 1uA from VDDC. SOSC frequency is temperature-dependent typically +/- 20% over the operating range. It can be trimmed using SOSCTRM register.

### SOSCTRM (0xA007h) SOSC Trim Register R/W (0x08) TB Protected

	7	6	5	4	3	2	1	0
RD	-			SOSCTRM[4]		SOSCT	RM[3-0]	
WR	-	-		SOSCTRM[4]		SOSCT	RM[3-0]	


SOSCTRM[4] 256KHz Select

If SOSCTRM[4] = 1, the SOSCH is centered at 256KHz. If it is 0, then it is centered at 128KHz. The default is 128KHz.

SOSCTRM[3-0] SOSC Trim Setting

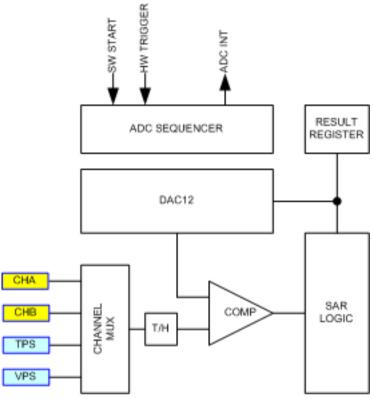
These bits are used to fine-tune the oscillation frequency.

No matter SOSCTRM[4]'s value, the SOSC is typical 128KHz and SOSC32KHz is typical 32KHz.



### 12.3 Clock Output

The internal clock can be selected to output from GPIO.


### CLKOUT (0xA006) Clock Out Control Register R/W (0x00)

-	• •		-							
	7	6								
RD	CLKOEN	CLKSE	CLKSEL[1-0] CLKDIV[4-0]							
WR	CLKOEN	CLKSE	EL[1-0]			CLKDIV[4-0]				
-	LKOEN LKSEL[1-0]	CLKOEN= Clock Sou 00 = SYSC 01 = IOSC 10 = SOSC 11 = PLL (	0 will disable 1 enables the rce Select CLK C32KHz reserved) sar	ne as SYSCL	к	EL to avoid the	e output glitch			
CLKDIV[5-0] Clock Divider The clock output is Clock Source divided by (CLKDIV[4-0] + 1).										



### 13 12-Bit SAR ADC (ADC)

The on-chip ADC is a 12-bit SAR-based ADC with a maximum ADC clock rate of 4MHz (2.5V – 5V) or 1MHz (1.8V - 2.4V). The ADC uses VDDC (1.5V typical) as a full-scale reference. Typical ADC accuracy is about 9.5 bit to 10 bit at 1.5V reference with the input range between 0.2V to 1.5V. The ADC has four intrinsic channels. CHA and CHB are further connected to GPIO's analog I/O switches to expand multiplexed inputs. TPS is connected to an internal temperature sensor with a positive temperature coefficient. VPS is 1/5th of VDD. When enabled, the ADC consumes about 1mA of current. The ADC also includes hardware to perform the resulting average. The average can be set to 1 to 8 times. ADC conversion can be software triggered or hardware triggered. Hardware trigger sources include Timer with Compare/Capture CC events, PWM Center, and Zero events.



### ADCCFG (0xA9h) ADC Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	ADCEN		ADCCS[2-0]			TRGTC	-	TRGPWM
WR	ADCEN		ADCCS[2-0]			TRGTC	-	TRGPWM
	ADCEN ADO		ole bit					

ADC Enable bit

ADCEN=1 enables ADC.

ADCEN=0 puts ADC into power down mode.

When ADCEN is set from 0 to 1, the program needs to wait at least 20us to allow analog bias to stabilize to ensure ADC's proper functionality. ADC Clock Divider

ADCCS[2-0]

ADCCS[2-0]	ADC CLOCK
0	SYSCLK/2
1	SYSCLK/4
2	SYSCLK/8
3	SYSCLK/16
4	SYSCLK/32
5	SYSCLK/64
6	SYSCLK/128
7	SYSCLK/256

ADCFM

ADC Result Format Control bit



ADCFM = 1 sets ADC result as MSB justified. ADCH contains the MSB bit of the result. ADCL[7-4] contains LSB results and ADCL[3-0] is filled with 0000. ADCFM = 0 sets ADC result as LSB justified. ADCH[7-4] is filled with 0000. ADCH[3-0]

contains the MSB result. ADCL contains the LSB results.

TRGTC TC CC Event Trigger Enable

TRGPWM PWM Center / Zero Event Trigger Enable

### ADCCTLA (0xCEh) ADC Control Register A R/W (0x00)

	7	6	5	4	3	2	1	0
RD	AVG	[1-0]	CHSE	EL[1-0]	SHEI	N[1-0]	ADCINTE	BUSY
WR	AVG	[1-0]	CHSE	EL[1-0]	SHE	N[1-0]	ADCINTE	CSTART
	AVG[1-0]	setting is	changed only		nultiple chann	It is recomme els are enable		
		AVG1	AVG0	A	DC Result			
		0	0	1 Tir	mes Average			
		0	1	2 Tir	mes Average			
		1	0	4 Tir	mes Average			
		1	1	8 Tir	nes Average			
	CHSEL[1-0]	ADC Cha	nnel Select					
		CHSEL	1] CHSEL[	0] AD	DC Channel			
		0	0		CHA			
		0	1		CHB			
		1	0	Te	emperature			
		1	1		1/5 VDD			
	SHEN[1-0]		nd Hold Enab					
		SHEN[	1] SHEN[(	)]	S/H Time			
		0	0	Pa	iss Through			
		0	1	1	ADCCLK			
		1	0	2	ADCCLK			
		1	1	3	ADCCLK			
	BUSY		set to 1 by ha		ADC is in conv	version.		
	CSTART Software Start Conversion bit Set CSTART=1 to trigger an ADC conversion on selected channels. This bit is self-cleared when the conversion is done.							

### ADCCTLB (0xB9h) ADC Control Register B R/W (0x00)

	• •		•	· /					
	7	6	5	4	3	2	1	0	
RD	-	ADCTCF	-	ADCPWMF	-	-	-	ADCIF	
WR	-	ADCTCF	-	ADCPWMF	-	-	-	ADCIF	
	ADCTCF ADCPWMF	ADCTCF indicated is cleared PWM Trig ADCPWN	by ADCIF. It ger Completio IF is set by ha d by ADCIF.	ware after the can be cleared	d by software a	and is forced t The completion	to be cleared v	when ADCIF conversion	
	ADCIE	ADC Conversion Completion Interrupt Flag bit							

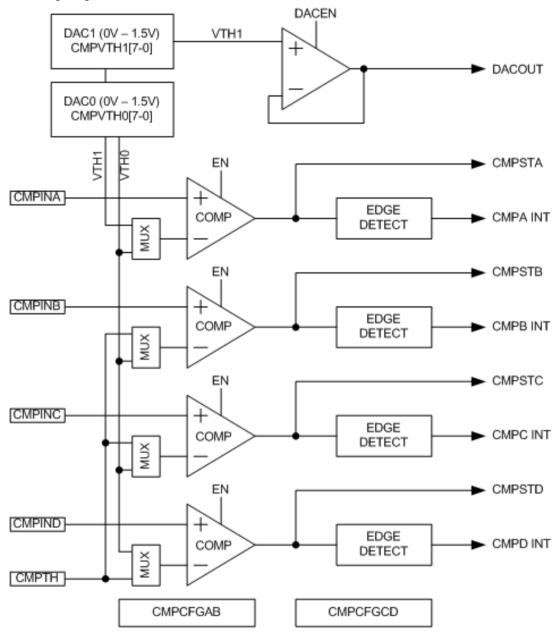


ADCIF is set by hardware when a conversion completes. If ADC interrupt is enabled, this also generates an interrupt. This bit must be cleared by software. Clearing ADCIF also clears all flags.

### ADCL (0xBAh) ADC Result Register Low Byte RO (0xXX)

	7	6	5	4	3	2	1	0			
RD	ADCL[7-0]										
WR	-										
ADCH (0xBBh) ADC Result Register High Byte RO (0xXX)											

# 7 6 5 4 3 2 1 0 RD ADCH[7-0]


If ADC is in conversion and another start or trigger is initiated, the result is undefined. Typically, the new start and trigger are ignored.



### 14 Analog Comparators (ACMP) and 8-bit DAC

There are four analog comparators as its on-chip external peripherals. When enabled, each comparator consumes about 250uA. The input signal range is from 0 to VDD. There are two 8-bit R-2R DAC associated with the comparators to generate the compare threshold. The R-2R DAC uses the internal 1.5V supply as the full-scale range, and thus limits the comparator threshold from 0V to 1.5V in 256 steps. Comparator A can select either VTH0 or VTH1 as the threshold. Comparator B/C/D can also select between VTH0 and the external threshold. VTH1 is also sent to a unity gain buffer as the DAC output. The buffer can supply or sink up to 150uA. Individual comparator when enabled consumes about 80uA/each, and the unity gain buffer consumes about 400uA/800uA under 3V/5V supply conditions.

The CPU can read the real-time outputs of the comparator directly through register access. The output is also sent to an edge detector and any edge transition can be used to trigger an interrupt. The stabilization time from off state to an enabled state of the comparator block is about 20usec. The block diagram of the analog comparator is shown in the following diagram.





	MPCPGAB (UXAUSon) Analog Comparator A/B Configuration Register R/W (UXUU)										
	7	6	5	4	3	2	1	0			
RD	CMPENA	THSELA	INTENA	POLA	CMPENB	THSELB	INTENB	POLB			
WR	CMPENA	THSELA	INTENA	POLA	CMPENB	THSELB	INTENB	POLB			
	CMPENA	Comparator A Enable bit. Set to enable the comparator. When CMPENA is set from 0 to 1, the program needs to wait at least 20us allowing									
	THSELA	<ul> <li>analog bias to stabilize to ensure comparator A's proper functionality.</li> <li>Comparator A Threshold Select bit. THSELA = 0, the comparator A uses VTH0 as the threshold. THSELA = 1, the comparator A uses VTH1 as the threshold.</li> </ul>									
	NTENA Set to enable the comparator A's interrupt.										
	POLA	A Channel A Output polarity control bit POLA=0 sets default polarity. POLA=1 reverses the output polarity of the comparator.									
	CMPENB	Compara When Cl	ator B Enable MPENB is set	bit. Set to er from 0 to 1, t	hable the com the program n pmparator B's	parator. eeds to wait a		allowing			
	THSELB				THSELB = 0 arator B uses a			TH0 as the			
	INTENBSet to enable the comparator B's interrupt.POLBChannel B Output polarity control bit POLB=0 sets default polarity. POLB=1 reverses the output polarity of the comparator.										

### CMPCFGAB (0xA038h) Analog Comparator A/B Configuration Register R/W (0x00)

### CMPCFGCD (0xA039h) Analog Comparator C/D Configuration Register R/W (0x00)

-	-		-			. ,					
	7	6	5	4	3	2	1	0			
RD	CMPENC	THSELC	INTENC	POLC	CMPEND	THSELD	INTEND	POLD			
WR	CMPENC	THSELC	INTENC	POLC	CMPEND	THSELD	INTEND	POLD			
		Comparator C Enable Bit. Set to enable the comparator. When CMPENC is set from 0 to 1, the program needs to wait at least 20us to allow analog bias to stabilize to ensure comparator C's proper functionality.									
	THSELC	Comparator C Threshold Select Bit. THSELC = 0, the comparator C uses VTH0 as the threshold. THSELC = 1, the comparator C uses external threshold.									
	INTENC	Set to enable the comparator C interrupt.									
	POLC	Channel C Output polarity control bit POLC=0 sets default polarity. POLC=1 reverses the output polarity of the comparator.									
	CMPEND	When C	MPEND is se	t from 0 to 1,	hable the com the program n omparator D's	leeds to wait a		to allow			
	THSELD	analog bias to stabilize to ensure comparator D's proper functionality. Comparator D Threshold Select Bit. THSELD = 0, the comparator D uses VTH0 as the threshold. THSELD = 1, the comparator D uses an external threshold.									
INTENDSet to enable the comparator D interrupt.POLDChannel D Output polarity control bit POLD=0 sets default polarity.POLD=1 reverses the output polarity of the comparator.											

### CMPVTH0 (0xA03Ah) Analog Comparator Threshold Control Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		VTH0 Register								
WR		VTH0 Register								

CMPVTH0 register controls the comparator threshold VTH0 through an 8-bit DAC. When set to 0x00h, the threshold is 0V. When set to 0xFFh, the threshold is 1.5V. When not used, it should be set to 0x00 to save power consumption.



### CMPVTH1 (0xA03Bh) Analog Comparator Threshold Control Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		VTH1 Register								
WR		VTH1 Register								

CMPVTH1 register controls the comparator threshold VTH1 through 8-bit DAC. When set to 0x00h, the threshold is 0V. When set to 0xFFh, the threshold is1.5V. When not used, it should be set to 0x00 to save power consumption. VTH1's DAC level is also used for DAC voltage output.

### CMPST (0xA03Dh) Analog Comparator Status Register R/W (0x00)

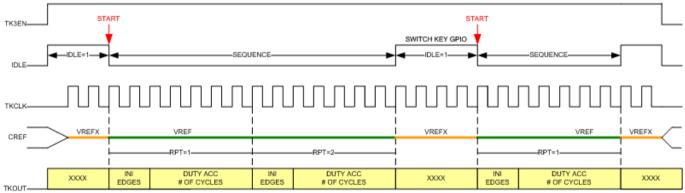
	(**********				(0000)					
	7	6	5	4	3	2	1	0		
RD	CMPIFD	CMPIFC	CMPIFB	CMPIFA	CMPSTD	CMPSTC	CMPSTB	CMPSTA		
WR	CMPIFD	CMPIFC	CMPIFB	CMPIFA	FILEND	FILENC	FILENB	FILENA		
	CMPIFD	Comparat	or D Interrupt	Flag bit. This	bit is set whe	n CMPSTD is	toggled and t	he		
		comparate	or D setting is	enabled. Thi	s bit must be o	cleared by sof	tware.			
	CMPIFC	Comparat	or C Interrupt	Flag bit. This	bit is set when	n CMPSTC is	toggled and t	he		
		comparate	or C setting is	enabled. Thi	s bit must be o	cleared by sof	tware.			
	CMPIFB	Comparat	Comparator B Interrupt Flag bit. This bit is set when CMPSTB is toggled and the comparator							
B setting is enabled. This bit must be cleared b				e cleared by so	oftware.	00	·			
	CMPIFA	Comparat	or A Interrupt	Flag bit. This	bit is set when	n CMPSTA is	toggled and th	ne comparator		
		A setting i	s enabled. Tl	his bit must be	e cleared by so	oftware.		•		
	CMPSTD	Comparat	or D Real-tim	e Output. If th	e comparator	is disabled, th	is bit is forced	l to low.		
	CMPSTC	Comparat	or C Real-tim	e Output. If th	e comparator	is disabled, th	is bit is forced	l to low.		
	CMPSTB	Comparat	or B Real-tim	e Output. If the	e comparator	is disabled, th	is bit is forced	to low.		
	CMPSTA	Comparat	or A Real-tim	e Output. If the	e comparator	is disabled, th	is bit is forced	to low.		
	FILEND	Comparat	or D Digital F	ilter Enable. F	Filter is 16 SYS	SCLK.				
	FILENC	Comparat	or C Digital F	ilter Enable. F	Filter is 16 SY	SCLK.				
	FILENB	Comparat	or B Digital Fi	lter Enable. F	Filter is 16 SYS	SCLK.				
	FILENA	Comparat	or A Digital Fi	lter Enable. F	Filter is 16 SYS	SCLK.				
			-							

### DACCFG (0xA03Ch) Analog Comparator Status Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	DACEN	VDDCCMPA	DACTEST	-	CMPHYSD	CMPHYSC	CMPHYSB	CMPHYSA		
WR	DACEN	VDDCCMPA	DACTEST	-	CMPHYSD	CMPHYSC	CMPHYSB	CMPHYSA		
DACEN DAC Enable										
				DAC output b						
				DAC output b	ouffer.					
	VDDCCMPA		PINA as VDD	-						
							sting purpose			
				VIPINA and G		tch, VDDC Is	exposed on G	PIO pin so		
1	DACTEST	-	C Test Mode							
I	DAGIEGI	DACTEST=1 connect DACOUT to ADC's CHB input internally. This needs software to								
		perform DAC output and ADC conversion.								
(	CMPHYSD	•	or D Hysteres							
		CMPHYSD = 0 disables the hysteresis of Comparator D								
		CMPHYSD = 1 enables the hysteresis (typical 10mV) of Comparator D.								
(	CMPHYSC	Comparat	or C Hysteres	sis Disable						
		CMPHYS	C = 0 disable	s the hysteres	is of Compara	ator C				
				•	is (typical 10m	nV) of Compa	rator C.			
	CMPHYSB	•	or B Hysteres							
		CMPHYSB = 0 disables the hysteresis of Comparator B								
		CMPHYSB = 1 enables the hysteresis (typical $10mV$ ) of Comparator B.								
	CMPHYSA	•	or A Hysteres			1 A				
CMPHYSA = 0 disables the hysteresis of Comparator A CMPHYSA = 1 enables the hysteresis (typical 10mV) of Comparator A.										
		CMPHYS	A = 1 enables	s the hysteres	is (typical 10m	iv) of Compai	rator A.			

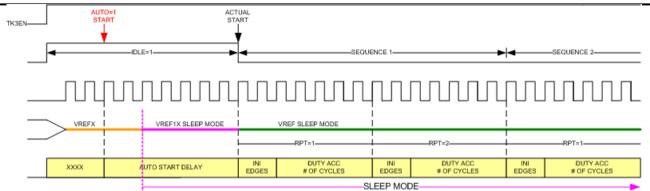
### LUMISSIL MICROSYSTEMS A Division of 🖾

# IS32CS8977


### 15 Touch Key Control III

TK3 is an enhanced TK2 implementation with differential dual slope operations. The capacitance to time conversion goes through two phases of charge transfer: One is charging up and the other one is discharging down using two thresholds equally spaced from ½ VDDC. Each charge transfer is obtained by subtraction of charge on internal reference capacitance and key capacitance. The difference of charge/discharge counting behavior is used to determine the key capacitance change in the ratio of internal capacitance. Better noise immunity from power, ground, and common-mode is achieved by dual-slope operation. Better S/N can also be achieved because the only differential charge is used for the transfer, and the internal capacitance exhibits better temperature and environmental stability making the conversion result less sensitive to these changes.

CREF, the integration capacitor of the charge transfer, is connected to P17 through ANIO multiplexer and CKEY is connected to other GPIO through multiplexer. A replica signal of CKEY is provided through a buffer and routed out as SHIELD through GPIO. The shield signal can be used to cancel the mutual capacitance effect from the neighboring signal trace of the detected key and provides better noise immunity against moisture or water.


To detect if a key is pressed, the duty count value TKLDT[15-0] or TKHDT[15-0] can be processed by software and compared with an average non-pressing duty count. The hardware can also be configured to auto-repeat accumulations of the duty cycle count to filter the sporadic noise effect. Since the comparator output should be a random duty with an average equal to the capacitance ratio, for low-frequency noise rejection, the hardware can be set to reject a continuous high or low comparator output that exceeds long durations. For high-frequency noise rejection, the hardware includes a pseudo-random sequence that randomizes the timing sequences of charge and discharge. A slow-moving average of the duty count value is stored in TKBASE[15-0] and software can use this for baseline calculation to auto compensate for environmental change.

Issuing a START command in the TK3CFGD register starts a conversion sequence that accumulates the comparator output into a count value. The count value and the total number of the cycle of the sequence can then be calculated to obtain the capacitance of the key. The timing diagram of the TK3 in normal operation is shown in the following diagram. CREF is first equalized to VREFX which is in close range of VREF. When a START command is issued, the first few edges of the comparator output are ignored to avoid any noise caused by the VREFX switching. And then the comparator output is accumulated into DTYL and DTYH registers. A sequence can consist of several conversion cycles depending on the RPT setting, and DTYL and DTYH maintain accumulation to obtain higher resolutions. After the sequence is completed, CREF is also connected to VREFX to stay ready for the next sequence to start.



TK3 can be set into low power auto-detect mode by setting AUTO bit in TK3CFGA. In this mode, an ultra-low power comparator is used and the clock for TK3 should be set to SOSCH. This mode can be used specifically for touch key wakeup during the MCU sleep mode. The total power consumption of TK3 in this mode is less than 20uA. A threshold register can be set to determine the auto-detect threshold either in absolute value or relative value versus the slow-moving baseline value. When the duty count value exceeds the threshold value, a wakeup and an interrupt are generated to CPU. The timing diagram for auto mode detection and entering into SLEEP mode is shown in the following diagram. Note the actual start of the sequence is delayed by AUTO START DELAY setting. This allows the internal VDDC to stabilize from switching normal mode to sleep mode supply regulators.





### TK3CFGA (0xA018h) TK3 Configuration Register A R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	TK3EN	CMPHYS[1-0]		REFSEL	SHIELDEN	TKIEN	TKLPM	AUTO			
WR	TK3EN	CMPH'	YS[1-0]	REFSEL	SHIELDEN	TKIEN	TKLPM	AUTO			
Т	K3EN		TK3 Enable								
		TK3EN=0 disables the TK3 circuits and clears all states. TK3EN=1 for TK3 normal operations.									
~				•							
U	MPHYS[1-0]	•	r Hysteresis I v hysteresis	Enable							
			v hysteresis								
			hysteresis								
			hysteresis								
R	EFSEL		ice Level Sele	ect							
			REFSEL=0 uses 1/2 VDDC as a reference								
		REFSEL=1 uses 2/3 VDDC as a reference									
S	HIELDEN	Shield Output Buffer Enable									
		SHIELDEN=1 enables the shield signal buffer. The buffer consumes about 200uA when									
		enabled.									
Т	KIEN	TK3 Interrupt Enable									
		TKIEN=1 enables the TK3 interrupt. TK3 interrupt is generated when a counting sequence is completed (including the repeat count if RPT[1-0] is not 00). Interrupt and wakeup is also									
		generated when TKIEN = 1 and AUTO = 1 after the auto-detection threshold is met.									
т	KLPM		When TK3 interrupt is generated, TKIF is also set to 1 by hardware. TK3 Low Power Mode								
•				de operations	3.						
			TKLPM=0 for normal mode operations. TKLPM=1 put the comparator into ultra-low power mode and should be used in auto								
		wakeup power saving mode. In this mode, TKCLK should use SOSCH/4 clock.									
A	UTO	Auto Wake Up Mode									
			AUTO=1 enables auto detect mode. In auto mode, the current duty count register value is								
			compared with baseline plus threshold (either absolute or relative). If duty count value is								
		-	higher than the threshold value, then an interrupt and a wakeup are generated.								
			AUTO=0 enables normal detect mode. In normal mode, writing START with "1" initiates a								
		conversion sequence, and when the duty count is obtained, an interrupt is generated.									

### TK3CFGB (0xA019h) TK3 Configuration Register B R/W (0x00)

	7	6	5	4	3	2	1	0
RD	RPT[1-0]		INI[1-0]		ASTDLY[1-0]		LFNF[1-0]	
WR	RPT	[1-0]	INI[	1-0]	ASTDLY[1-0]		LFNF[1-0]	
RPT[1-0] Repeat Sequence Count 00 = No Repeat 01 = 4 times 10 = 8 times 11 = 16 times INI[1-0] Initial Settling Delay								



	INI[1-0] defines the number of TKCLK periods for the initial settling of CREF. The delay is
	set to (INI[1-0] + 1) * 4 * TKCLK.
ASTDLY[1-0]	Auto Mode Start Delay
	STDLY[1-0] inserts an inter-sequence idle time of (ASTDLY[1-0] + 1) * 256 TKCLK at each sequence start. This delay allows the stabilization time of VREFX from normal mode to sleep mode.
LFNF[1-0]	Low-Frequency Noise Filter Setting
	00 = disables LFNF
	Noise injection longer than LFNF[1-0] * 8 times is ignored.
	Please note: In the presence of such noise, the cycle count still continues. The end result is that the sum of DUTYL and DUTYH will not equal to cycle count.

### TK3CFGC (0xA01Ah) TK3 Configuration Registers C R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	SLOV	W[1-0]		CYCLE[2-0]		BASEINI	THDSEL	AUTOLFEN			
WR	SLOV	V[1-0]		CYCLE[2-0]		BASEINI	THDSEL	AUTOLFEN			
S	LOW[1-0]	Baseline S	ow Moving A	Average setting	)		·	- -			
		00 = 32 average									
			01 = 64 average								
		10 = 128 average									
		11 = 256 average The duty value is averaged by SLOW[1-0] conversion and undated to BASELINE register									
		The duty value is averaged by SLOW[1-0] conversion and updated to BASELINE register through moving average.									
С	YCLE[2-0]	Cycle Count of each conversion sequence									
		000 = 1024		·							
		001 = 2048	001 = 2048								
		010 = 4096									
		011 = 8192									
		100 = 12288 101 = 16384									
		101 = 16384 110 = 32768									
		110 = 32708									
		The cycle count is each sequence cycle count. And it is repeated if RPT is not 0.									
		Please note that the conversion always ends with the defined cycle count.									
В	ASEINI	Baseline Initial Value									
			If BASEINI = 1, then the first DTYL count after entering auto mode is loaded to the								
		BASELINE register as its initial value to start moving average.									
		If BASEINI = 0, then the value written in BASELINE before entering auto mode is used as the initial value to start moving average.									
т	HDSEL	Threshold Value Setting									
		THDSEL = 0 uses TKTHD[15-0] as the threshold to compare with DTYL to generate the									
		interrupt ar				-	_				
				HD[15-0] + TK		s the threshole	d.				
A	UTOLFEN	Low-Frequency Noise Filtering in Auto mode If AUTOLFEN = 0, then low-frequency noise filtering in auto mode is disabled.									
			If AUTOLFEN = 1, then low-frequency noise filtering in auto mode is enabled. The low noise filtering status flag is still valid regardless of AUTOLFEN setting. Software								
		can determine if the current conversion result needs to be discarded by checking LFNF flag.									
							.,	5 - 5			

### TK3CFGD (0xA01Bh) TK3 Configuration Registers D R/W (0x00)

	7	6	5	4	3	2	1	0
RD	CCHG[2-0]			ASTDLYEN	PSRDEN	LFNF	TKIF	BUSY
WR		CCHG[2-0]		ASTDLYEN	PSRDEN	LFNF	TKIF	START
С	CCHG[2-0] Charge Capacitance Se 000 = 10pF 001 = 20pF 010 = 30pF			ect				



	011 = 40pF
	100 = 50pF
	101 = 60pF
	110 = 70pF
	111 = 80pF
ASTDLYEN	Auto Start Delay Enable
	ASTDLYEN = 1 enables ASTDLY[1-0] delay start for auto mode.
	ASTDLYEN = 0 disables ASTDLY[1-0] delay.
PSRDEN	Pseudo Random Sequence Enable
	PSRDEN = 1 enables the random sequence in conversion
	PSRDEN = 0 disables
LFNF	Low-Frequency Noise Detection Flag
	LFNF is set by hardware if in the present conversion a Low-Frequency Noise is detected.
	LFNF needs to be cleared to "0" by software
TKIF	TK3 Interrupt Flag
	TKIF is set by hardware when a TK3 interrupt occurred by either conversion sequence
	completed or a valid detection in auto mode. TKIF needs to be cleared to "0" by software.
START	Start Conversion
	Writing "1" into START initiates the conversion sequence. It is cleared by hardware when
	conversion is complete. Please note that writing AUTO "1" also starts the conversion in
	auto mode.
BUSY	Conversion Status
	BUSY is set to 1 by hardware and it indicates the conversion sequences are still running.

### TK3CFGE (0xA00Ch) TK3 Configuration Register E R/W (0x00)

	7	6 5		4	3	2	1	0
RD		-			TKCS[3-0]			
WR		-				TKCS	S[3-0]	
T	KCS[3-0]	TK3 Clock TKCS[3-0] TKCS[3-0] TKCS[3-0] TKCS[3-0] TKCS[3-0] TKCS[3-0] TKCS[3-0] TKCS[3-0] TKCS[3-0] TKCS[3-0] TKCS[3-0] TKCS[3-0]	= 0000 S = 0001 S = 0001 S = 0010 S = 0010 S = 0011 S = 0100 S = 0101 S = 0110 S = 0111 S = 1000 S = 1001 S = 1001 S = 1110 S = 1111 S = 1000 S =	YSCLK/2 YSCLK/4 YSCLK/6 YSCLK/10 YSCLK/10 YSCLK/16 YSCLK/22 YSCLK/256 OSCH/2 OSCH/4 reserved	·			

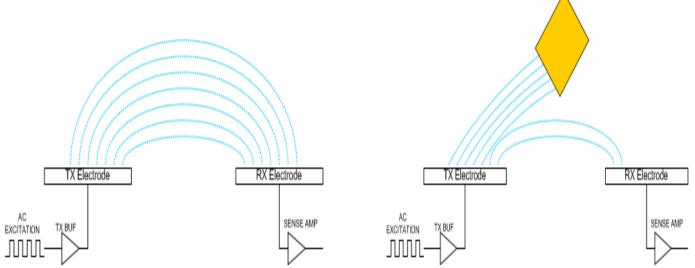
SOSCH/2 should be used for sleep mode auto wakeup.

### TK3HDTYL (0xA01Ch) TK3 High Duty Count Register L RO (0x00)

	7	6	5	4	3	2	1	0
RD	TK3HDTY[7-0]							
WR	-							

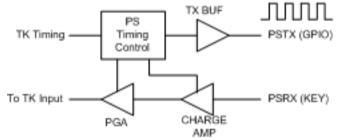


<b>FK3HDT</b>	TYH (0xA01DI	n) TK3 High [	Duty Count R	egister H RO	(0x00)			
	7	6	5	4	3	2	1	0
RD				TK3HD1	FY[15-8]			
WR					-			
<b>FK3LDT</b>	YL (0xA01Eh	) TK3 Low D	uty Count Re	gister L RO (	0x00)			
	7	6	5	4	3	2	1	0
RD				TK3LD	TY[7-0]	•	L	
WR					-			
<b>FK3LDT</b>	YH (0xA01Fh	) TK3 Low D	uty Count Re	gister H RO (	0x00)			
	7	6	5	4	3	2	1	0
RD				TK3LD1	[ [] []			
WR	-							
ГКЗВА	SEL (0xA028h	) TK3 Baseli	ne Register L	R/W (0x00)				
	7	6	5	4	3	2	1	0
RD				TK3BA				
WR	TK3BASE[7-0]							
	SEH (0xA029h	) TK3 Baseli	ne Register H					
	7	6	5	4	3	2	1	0
RD	•	Ŭ	Ū		SE[15-8]	_	·	
WR					SE[15-8]			
	DL (0xA02Ah)	TK3 Throsh	d Pogistor I					
	7		5	4	3	2	1	0
RD	1	6	5	4 TK3T⊦		2	I	0
WR				TK3TF				
	0H (0xA02Bh)		-	. ,		-		
	7	6	5	4	3	2	1	0
RD				TK3TH				
WR				ТКЗТН	D[15-8]			
ГКЗРU (	(0xA02Ch) Th	(3 DC Pull-Up	Control Reg	ister R/W (0x	:00)			
	7	6	5	4	3	2	1	0
RD	PUIEN	PUREN	-	-			3-0]	
WR	PUIEN	PUREN	-	-	PU[3-0]			


TK3PU is to configure a constant DC pull-up on CREF to allow high capacitance touch-key detection. ADC pull-up can compensate the equivalent resistance caused by a high capacitance key. Connecting a switching current source or resistor can thus maintain touch key detection sensitivity.

Pull-up DC Current Enable
Pull-up DC Resistor Enable
Pull-up Selection
For DC current, PU[3-0] enables 8uA/4uA/2uA/1uA current source.
For Resistor, PU[3-0] enables 5K/10K/20K/40K resistor.




### 16 Active Proximity Sensor

The active proximity sensor uses mutual capacitance sensing by driving a transmit electrode and sensing the electric field change at the receive electrode. This is shown as the following illustrations.



On the left, an AC excitation voltage is driving the TX electrode and leads to an electric field established between the TX electrode and the RX electrode. When a mass-conductive object such as finger approaches, the flux lines between the electrodes get disturbed. Using a charge sense amplifier, the change of flux lines can be amplified and thus accomplishes proximity sensing. In the diagram, we can see that if the distance between TX and RX electrodes is farther, then the detection of proximity can be at a longer range. We can also see that a larger amplitude of TX output can lead to easier proximity detection.

The proximity sensor is tightly coupled with the Touch Key controller. It consists of an excitation waveform generator, and a synchronous charge amplifier followed by a programmable amplifier as the sense amplifier. The output of the sense amplifier is connected as an input to the Touch Key Controller and the TK controller is used to detect the change of sense amplifier output as proximity detections. A typical excitation signal operates at a frequency between 64KHz to 128KHz. Since Proximity Sensor (PS) is at the same clock domain as the TK controller, setting TK clock will determine the excitation frequency. Typically, it should use SOSCH/2 for TK clock.



Please note that the output PSTX is routed to externally through the multi-function selection of the GPIO. Hence any GPIO pin can be used for PSTX purposes. The input PSRX keys share the ANIO multiplexer used for TK's shield output. When PS is enabled, TK's shield function must be disabled.

### APSCFGA (0xA008) Active Proximity Sensor Configuration Register A R/W (0x00)

				•	•	· ·			
	7	6	5	4	3	2	1	0	
RD	APSEN		RXCAL[6-0]						
WR	APSEN		RXCAL[6-0]						
	NPSEN	Active PS Enable APSEN=1 enables the APS. If APS is enabled, the TK controller is connected to PS output. Receive Electrode Capacitance Calibration RXCAL is used to adjust the cancellation of the parasitic capacitance on RX electrode. Each bit controls one of the binary-weighted capacitance arrays. RXCAL[0] = 1, 32fF RXCAL[1] = 1, 64fF RXCAL[2] = 1, 128fF RXCAL[3] = 1, 256fF							





RXCAL[4] = 1, 512fF RXCAL[5] = 1, 1024fF RXCAL[6] = 1, 2048fF The range is 32fF to 4pF.

### APSCFGB (0xA009) Active Proximity Sensor Configuration Register B R/W (0x78)

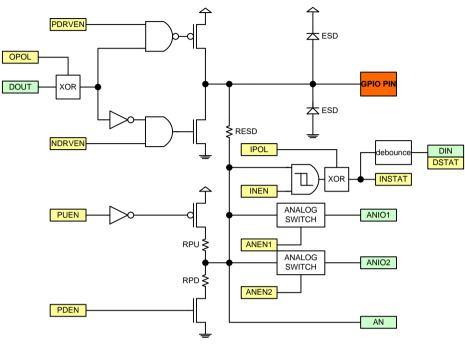
	7	6	5	4	3	2	1	0
RD		CREFS	EL[3-0]		CAGAIN[3-0]			
WR		CREFS	EL[3-0]		CAGAIN[3-0]			
	REFSEL[3-0] AGAIN[3-0]	This is equi capacitance Each bit of CREFSET[ CREFSET[ CREFSET[ CREFSET[ CREFSET[ Ideally, CR Charge Am Charge Am Each bit of capacitor o electrodes smaller the CAGAIN[0] CAGAIN[2] CAGAIN[3]	e is 400fF. CREFSEL[3- 0] = 1, 64fF 1] = 1, 128fF 2] = 1, 256fF 3] = 1, 512fF 3-0]=0000 is EF should be plifier Gain S plifier is alwa CAGAIN[3-0] f the charge a and the feedb feedback cap = 1, 64fF = 1, 128fF = 1, 256fF	HG setting of 0] selects a bin not allowed. set to betwee etting ys enabled wi selects a bin mplifier. The pack capacitor bacitance, the	en 400fF to 80 nen PS is ena ary weighted o ratio of the m		y for the feedb ance between charge amplif	oack TX/RX ier. The

# APSCFGC (0xA00A) Active Proximity Sensor Configuration Register C R/W (0x27)

		7	6	5	4	3	2	1	0		
	RD	PGAEN		PC[2-0]			PGASET[3-0]				
	WR	PGAEN		PC[2-0]		PGASET[3-0]					
PGAEN       Set to enable PGA circuit.         PC[2-0]       Power Control Setting         PC[2-0] sets the power consumption of the charge amp         of the binary-weighted current sources.       The higher the         and faster speed when parasitic receive capacitance is         time of the amplifiers.         PC[0] = 1, 0.4uA         PC[1] = 1, 0.8uA         PC[2] = 1, 1.6uA         PC[2-0] = 000 is not allowed.					the setting re	sults, the high	ner power				
	P	GASET[3-0]	PGA Gain Setting GAIN = 8 / (4 * PGASET[3] + 2 * PGASET[2] + PGASET[1] + PGASET[0]) Maximum gain is 8 when PGASET[3-0]=0001 or 0010. Minimum gain is 1 when PGASET[3-0]=1111 PGASET[3-0] = 0000 is not allowed.								

### APSCFGD (0xA00B) Active Proximity Sensor Configuration Register D R/W (0x07)

	7	6	5	4	3	2	1	0
RD	-				PSLOAD[3-0]			
WR	-				PSLOAD[3-0]			
P	PSLOAD[3-0] Output Load Setting							




This set is the pseudo load of TK controller. This load is only active when APSEN = 1. PSLOAD[0] = 1, 115fF PSLOAD[1] = 1, 230fF PSLOAD[2] = 1, 460fF PSLOAD[3] = 1, 920fF



### 17 GPIO Multi-Function Select and Pin Interrupt

Each IO pin has a configurable IO buffer that can meet various interface requirements. The GPIO pins can be configured as an external pin interrupt input or for wakeup purposes. Each port has edge detection logic and a latch for rising and falling edge detections. During hardware reset and after, the IO buffer is put in a high impedance state with all drives disabled.



### IOCFGO (0xA100h – 0xA10Fh) IO Buffer Output Configuration Registers R/W (0x00)

	-			-	-				
	7	6	5	4	3	2	1	0	
RD	IPOL	PDRVEN	NDRVEN	OPOL	ANEN2	ANEN1	PUEN	PDEN	
WR	IPOL	PDRVEN	NDRVEN	OPOL	ANEN2	ANEN1	PUEN	PDEN	
	IPOL Input Polarity IPOL=1 reverses the input logic. IPOL=0 is for normal logic polarity. PDRVEN Output PMOS driver enable. Set this bit to enable the PMOS of the output driver. DISABL is the default value.							er. DISABLE	
Ν	DRVEN	Output NMOS driver enable. Set this bit to enable the NMOS of the output driver. DISABLE is the default value.							
0	OPOL Output Polarity Control Output buffer data polarity control								
A	NEN1	Analog MU	•	ontrol. Set thi		ct the pin to th	ne internal ana	alog	
A	ANEN2 Analog MUX 2 enables control. Set this bit to connect the pin to the internal analog peripheral. DISABLE is the default value.						alog		
PUEN Pull-up resistor control. Set this bit to enable a pull-up resistor connection to th pull-up resistor is approximately 6K Ohm. DISABLE is the default value.							e pin. The		
PDEN Pull down resistor control. Set this bit to enable pull-down resistor connection pull-down resistor is approximately 6K Ohm. DISABLE is the default value.						connection to	o the pin. The		

### IOCFGI (0xA110h – 0xA11Fh) IO Buffer Input Configuration Registers R/W (0x00)

	7	6	5	4	3	2	1	0
RD	PI1EN	PI0EN	RIF	FIF	INEN	OERRF	DSTAT	INSTAT
WR	PI1EN	PI0EN	RIEN	FIEN	INEN	OERREN	DBN	[1-0]
PI1ENPin Interrupt 1 EnablePI0ENPin Interrupt 0 EnableRIENRising Edge Pin Interrupt EnableRIFRising Edge Pin Interrupt Flag								



	RIF is set to 1 by hardware after either a PI1 or PI0 rising edge interrupt has occurred. RIF
	must be cleared by software writing RIEN with "0". RIEN needs to be enabled if the next
	rising edge interrupt is required.
FIEN	Falling Edge Pin Interrupt Enable
FIF	Falling Edge Pin Interrupt Flag
	FIF is set to 1 by hardware after either a PI1 or PI0 falling edge interrupt has occurred. FIF must be cleared by software writing FIEN with "0". FIEN needs to be enabled if the next falling edge interrupt is required.
INEN	Input Buffer Enable
	INEN=1 enables the input buffer.
	INEN=0 disables the input buffer. In the disabled state, the output of the input buffer is logic 0.
	If the input is floating or not solid 0 and 1 voltage level, DC current may flow in the input buffer. Disabling the input buffer can remove DC leakage of the input buffer due to this reason.
OERREN	Output Error Interrupt Enable
	OERREN=1 enables output error detection and interrupt. The output value is compared with the input value sampled after three SYSCLK delays. The comparison is performed whenever the output value changes. And a mismatch will generate an interrupt with OERRF set. Either PI1 or PI0 must also be enabled for the interrupt to be valid, otherwise, only the flag OERRF is set to 1 for a mismatch.
	OERREN=0 disables the output error detection. OERREN=0 also clears OERRF to 0.
OERRF	Output Error Flag
DSTAT	Real Time Status after De-bounce. DSTAT is read-only. Please note that the de-bounced input is used for generating interrupts, as well as all other
	multi-function inputs including PORT registers. The non-debounced input can only be read through INSTAT bit.
INSTAT	Real Time Status of Input Buffer. INSTAT is read-only.
DBN[1-0]	De-Bounce Time Setting
	00 – OFF
	01 – 4 SOSC32KHz (125usec)
	10 – 16 SOSC32KHz (500usec)
	11 – 64 SOSC32KHz (2msec)
MFCFG (0xA120 –	0x A12Fh) Port Multi-Function Configuration Registers R/W (0x00)

		,		5	0	· · ·		
7 6 5				4	3	2	1	0
RD	MFCFG[7-0]							
WR	MFCFG[7-0]							

Please see PIN OUT section for description of each port multi-function selection.



### 18 Information Block IFB

There are two IFB blocks and each contains 128x16 bit information. The address 0x000h to 0x03Fh in the first IFB is used to store manufacturer information. Address 0x040 is for boot code wait time, and 0x041 to 0x043 are used for boot code. The first IFB can be erased only in Writer Mode and can be written using Flash Controller for addresses beyond 0x40. This is to protect any alteration of the manufacturer and calibration data. The 2nd IFB is open for erase/write for user access. The following table shows the contents of the first IFB for the manufacturer data. Please note that these are in lower LSB bytes. The upper MSB byte contains its corresponding ECC code.

$\begin{array}{c c} 00 - 01 \\ 02 - 07 \\ 08 - 09 \\ 0A - 0B \\ 0C \\ 0D \\ 0E - 0F \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 - 1B \\ 1C - 1D \\ \end{array}$	TYPE M M M M M M M M M M M M M M M M	DESCRIPTION         IFB Version         Product Name         Package and Product Code         Product Version and Revision         Flash Memory Size         SRAM Size         Customer Specific Code         CP1 Information         CP2 Information         CP3 Version         CP3 BIN
$\begin{array}{c c} 02 - 07 \\ 08 - 09 \\ 0A - 0B \\ 0C \\ 0D \\ 0E - 0F \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 - 1B \\ 1C - 1D \\ \end{array}$	M M M M M M M M M M M M M	Product NamePackage and Product CodeProduct Version and RevisionFlash Memory SizeSRAM SizeCustomer Specific CodeCP1 InformationCP2 InformationCP3 VersionCP3 BIN
08 - 09           0A - 0B           0C           0D           0E - 0F           10           11           12           13           14           15           16 - 1B           1C - 1D	M M M M M M M M M M M M	Package and Product CodeProduct Version and RevisionFlash Memory SizeSRAM SizeCustomer Specific CodeCP1 InformationCP2 InformationCP3 VersionCP3 BIN
0A - 0B           0C           0D           0E - 0F           10           11           12           13           14           15           16 - 1B           1C - 1D	M M M M M M M M M M	Product Version and Revision Flash Memory Size SRAM Size Customer Specific Code CP1 Information CP2 Information CP3 Version CP3 BIN
0C           0D           0E - 0F           10           11           12           13           14           15           16 - 1B           1C - 1D	M M M M M M M M M	Flash Memory SizeSRAM SizeCustomer Specific CodeCP1 InformationCP2 InformationCP3 VersionCP3 BIN
OD           0E - 0F           10           11           12           13           14           15           16 - 1B           1C - 1D	M M M M M M M	SRAM Size Customer Specific Code CP1 Information CP2 Information CP3 Version CP3 BIN
0E - 0F           10           11           12           13           14           15           16 - 1B           1C - 1D	M M M M M M	Customer Specific Code CP1 Information CP2 Information CP3 Version CP3 BIN
10       11       12       13       14       15       16 - 1B       1C - 1D	M M M M M	CP1 Information CP2 Information CP3 Version CP3 BIN
11           12           13           14           15           16 - 1B           1C - 1D	M M M M	CP2 Information CP3 Version CP3 BIN
12 13 14 15 16 - 1B 1C - 1D	M M M	CP3 Version CP3 BIN
13 14 15 16 - 1B 1C - 1D	M M	CP3 BIN
14 15 16 - 1B 1C - 1D	М	
15 16 - 1B 1C – 1D		
16 - 1B 1C – 1D	М	FT Version
1C – 1D		FT BIN
	М	Last Test Date
	М	Boot Code Version
1E	М	Boot Code Segment
1F	М	Checksum for 0x00 – 0x1E
20	М	REGTRM value for 1.5V
21	М	IOSC ITRM value for 16MHz @5V
22	М	IOSC VTRM value for 16MHz @5V
23	М	LVDTHD value for detection of 4.0V
24	М	LVDTHD value for detection of 3.0V
25	М	IOSC ITRM value for 32MHz @5V
26	М	IOSC VTRM value for 32MHz @5V
27	М	IOSC ITRM value for 16MHz @3V
28	М	IOSC VTRM value for 16MHz @3V
29	М	IOSC ITRM value for 32MHz @3V
2A	М	IOSC VTRM value for 32MHz @3V
2B – 2C	М	Temperature Offset LSB/MSB
2D	М	Temperature Coefficient
2E – 2F	М	Internal Reference LSB/MSB
30	М	SOSC 128KHz Trim
31	M	SOSC 256KHz Trim
32 – 33	M	Reserved
34	M	Timer 0 High TRIM *
35	M	Timer 0 Low TRIM *
36 - 38	M	Reserved
39	M	Checksum for 0x20 – 0x39
3A – 3F	M	Retention Value
40	M/U	Boot Code Wait Time. Boot code uses this byte to determine the ISP wait time. This wait time is necessary for a stable ISP. After the user program is downloaded, the wait time can be reduced to minimize power-on time. Each "1" in bit [1-0] constitutes 1 second, bits [3-2] constitutes 2 seconds and bit [7] is I2CSCL2 check. For example, 0b10000111 is 4 second wait time and also checks



			I2CSCL2 pad status. If I2CSCL2 is low, then a wait time of 6 seconds is used regardless of the bit [3-0] setting. The maximum wait time is 6 seconds, and the minimum wait time is 0 seconds.	
	41 – 43	М	Reserved	
Γ	44 - FF	U	User One-Time Programmable Space	



### 19 Writer Mode

Writer Mode (WM) is used by the manufacturer or by users to program the flash (including IFB) through dedicated hardware (Writer or Gang Writer). Under this setup, only WM-related pins should be connected and all other unused pins left floating. Writer mode follows a proprietary protocol and is not released to general users. Users must obtain it through a formal written request to the manufacturer and must sign a strict Non-Disclosure-Agreement. Writer Mode provides the following commands.

ERASE Main Memory ERASE Main Memory and IFB READ AND VERIFY Main Memory (8-Byte) WRITE BYTE Main Memory READ BYTE IFB WRITE BYTE IFB Fast Continuous WRITE Fast Continuous READ

The writer mode is to protect against code piracy. The default state of the device is locked writer mode. Only ERASEMM and ERASEMMIFB, and READVERIFYMM commands can be executed. It can be unlocked by READVERIFYMM in the range of 0xEFF8 to 0xEFFF. These locations contain an 8-byte security key that users can place to secure the e-Flash contents. The probability of guessing the key is 1 in 2^64 = 1.8E19. Since each trial of READVERIFYMM takes 10usec, it takes about 6E6 years to exhaust the combinations. If the key is unknown, a user can choose to issue the ERASEMM command and then fully erase the entire contents (including the key). Once fully erased, all data in the flash is 0xFF, and it can be successfully unlocked by READVERIFYMM with 8 bytes of 0xFF. Users must not erase the information in IFB and should not modify the manufacturer data. Any violation of this results in the void of the manufacturer's warranty. The following pins are used for e-Flash writer mode. P02 is optional.

PIN	Ю	Description	Function
P00	0	Flash serial data output.	SDO
P03	-	Flash serial data input	SDI
P01	I	Flash serial clock input.	SCLK
P04	-	Flash serial port enable, low active	SCE
RSTN	-	Write mode entry input using timing sequence	RSTN
P02	0	TBIT status output	TBIT
VDD		Power supply for DUT	VDD
VSS		Ground supply for DUT	VSS



### 20 Boot Code and In-System Programming

After production testing of the packaged devices, the manufacturer writes the manufacturer information and calibration data in the IFB. At the last stage, it writes a fixed boot code in the main memory residing from 0xF000 to 0xFFFF. The boot code is executed after any reset. The boot code first reads IFB's wait time setting and scans the I²C slave for any In-System-Programming request during the wait time duration. If any valid request occurs during the scan, the boot-code proceeds to follow the request and performs the programming from the host. Otherwise, the boot code jumps to 0x0000 after the wait time is expired. The default available ISP commands are as below.

UNLOCK DEVICE NAME BOOTC VERSION READ AND VERIFY Main Memory (8-Byte) ERASE Main Memory excluding Boot Code ERASE SECTOR Main Memory WRITE BYTE Main Memory SET ADDRESS CONTINUOUS WRITE CONTINUOUS READ READ BYTE IFB WRITE BYTE IFB

Similar to writer mode, ISP is in a locked state at default. No command is accepted under a locked state. To unlock the ISP, an 8-byte READVERIFY of 0xEFF8 to 0xEFFF must be successfully executed. Hence the default ISP boot program provides similar code security as the Writer mode.



### 21 Electrical Specifications

### 21.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	RATING	UNIT	NOTE
VDD	Supply Voltage	5.5	V	
TA	Ambient Operating Temperature	-40 –125	°C	
TSTG	Storage Temperature	-65 – 150	°C	

### 21.2 Recommended Operating Condition

SYMBOL	PARAMETER	RATING	UNIT	NOTE
VDD	Supply Voltage for IO and 1.5V regulator	2.3 – 5.5	V	
TA	Ambient Operating Temperature	-40 – 125	°C	

### 21.3 DC Electrical Characteristics (VDD = 2.2V to 5.5V TA=-40°C to 125°C)

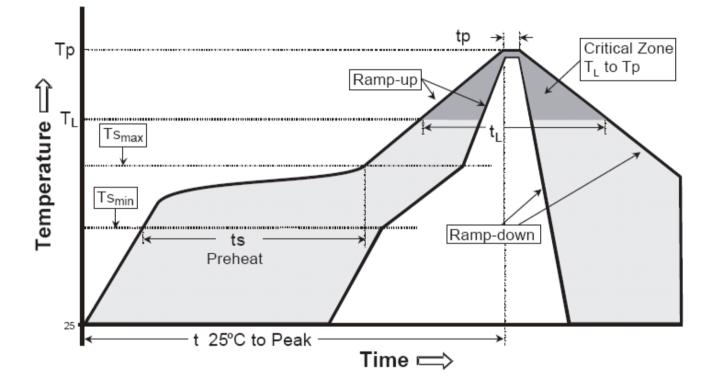
SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTE
Power Supp	bly Current					
IDD	Total IDD through VDD at 16MHz		25			
Normal	Peripherals off	-	3.5	-	mA	
IDD	Total IDD through VDD at 1MHz		1.0		mA	
Normal	Peripherals off	-	1.0	-	ША	
IDD versus Frequency	IDD Core Current versus Frequency	-	150	-	uA/ MHz	
IDD, Stop	IDD, stop mode	-	500	-	μA	Main regulator on
IDD, Sleep	IDD, sleep mode, 25°C	-	1.5	5	μA	Main regulator off
	IDD, sleep mode, 85°C	-	4	10	μA	Main regulator off
-	IDD, sleep mode, 125°C		15	40	μA	Main regulator off
<b>RSTN Reset</b>	t					
VIHRS	Input High Voltage, reference to VDD	0.7VDD	-	-	V	
VILRS	Input Low Voltage	-	-	0.2VDD	V	
VRSHYS	RSTN Hysteresis	-	0.2VDD	-	V	
GPIO DC Ch	naracteristics		1	1		
VOH,4.5V	Output High Voltage 1 mA	-	-0.2	-0.5	V	Reference to VDD
VOL,4.5V	Output Low Voltage 8 mA	-	0.3	0.5	V	Reference to VSS
VOH,3.0V	Output High Voltage 1 mA	-	-0.3	-0.6	V	Reference to VDD
VOL,3.0V	Output Low Voltage 8 mA	-	0.3	0.6	V	Reference to VSS
IIOT	Total IO Sink and Source Current	-80	-	80	mA	
VIH	Input High Voltage	³∕₄VD D	-	-	V	
VIL	Input Low Voltage	-	-	¼VD D	V	
VIHYS	Input Hysteresis	-	1	-	-	
RPU	Equivalent Pull-Up resistance	-	25K	-	Ohm	
RPU,RSTN	RSTN Pull-Up resistance	-	5K	-	Ohm	
RPD	Equivalent Pull-Down Resistance	-	25K	-	Ohm	
REQAN1	Equivalent ANIO Switch Resistance @3.3V	-	110	-	Ohm	ANIO1 Switch
	Equivalent ANIO Switch Resistance @5V	-	100	-	Ohm	ANIO1 Switch
REQAN2	Equivalent ANIO Switch Resistance @3.3V	-	450	-	Ohm	ANIO2 Switch
	Equivalent ANIO Switch Resistance @5V	-	350	-	Ohm	ANIO2 Switch
VDDC Chara	acteristics					
VDDCN	Normal Core Voltage 1.5V (Calibrated)	1.4	1.5	1.6	V	Normal Mode



SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTE
VDDCS	Sleep Core Voltage 1.5V	-	1.42	-	V	Sleep Mode
Low Supply	Low Supply (VDD) Voltage Detection					
VDET	Detection Range	2.0	-	4.8	V	
VDETHYS	Detection Hysteresis	-	100	-	mV	
ADC12 Cha	ADC12 Characteristics					
ADCLIN	ADC Linearity, Center range	-	+/- 2	-	LSB	
ADULIN	ADC Linearity, 0.2V to FS-0.2V	-	+/- 3	-	LSB	
ADCFQ	ADC Frequency	-	2	4	MHz	

#### 21.4 AC Electrical Characteristics (VDD =2.2V to 5.5V TA=-40°C to 125°C)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTE	
	System Clock and Reset						
FSYS	System Clock Frequency	-	16	33	MHz		
FIOSC	Crystal Oscillator Frequency	5	16	25	MHz		
TSIOSC	Stable Time for IOSC after power up	2	-	-	msec	After VDD > 2.0V	
Supply Tim	ing	4	1				
TSUPRU	VDD Ramp Up time	1	-	50	msec	WST = 0 for 16MHz	
TSUPRD	VDD Ramp Down Time	-	-	50	msec		
TPOR	Power On Reset Delay	-	5	-	msec		
IOSC		1	1				
	IOSC Calibrated 16MHz/32MHz	-1	0	+1	%		
	IOSC Startup Time	-	-	1	μs		
FIOSC	Temperature and VDD variation 85°C	-2	0	+2	%		
	Temperature and VDD variation 125°C	-3	0	-3	%		
SOSC				1	1		
SOSC	Slow Oscillator frequency	-	128	-	KHz		
IO Timing				1	1		
TPD3 ++	Propagation Delay 3.3V No load	-	6	-	ns		
TPD3 ++	Propagation Delay 3.3V 25pF load	-	15	-	ns		
TPD3 ++	Propagation Delay 3.3V 50pF load	-	20	-	ns		
TPD3	Propagation Delay 3.3V No load	-	5	-	ns		
TPD3	Propagation Delay 3.3V 25pF load	-	12	-	ns		
TPD3	Propagation Delay 3.3V 50pF load	-	15	-	ns		
TPD5 ++	Propagation Delay 3.3V No load	-	5	-	ns		
TPD5 ++	Propagation Delay 3.3V 25pF load	-	12	-	ns		
TPD5 ++	Propagation Delay 3.3V 50pF load	-	16	-	ns		
TPD5	Propagation Delay 3.3V No load	-	4	-	ns		
TPD5	Propagation Delay 3.3V 25pF load	-	9	-	ns		
TPD5	Propagation Delay 3.3V 50pF load	-	12	-	ns		
Flash Mem							
TEMAC	Embedded Flash Access Time	-	40	45	ns	TWAIT must > TEMAC	
TEMWR	Embedded Flash Write Time	-	20	25	μs		
TEMSER	Embedded Flash Sector Erase Time	-	2	2.5	ms		
TEMMER	Embedded Flash Mass Erase Time	-	10	12	ms		

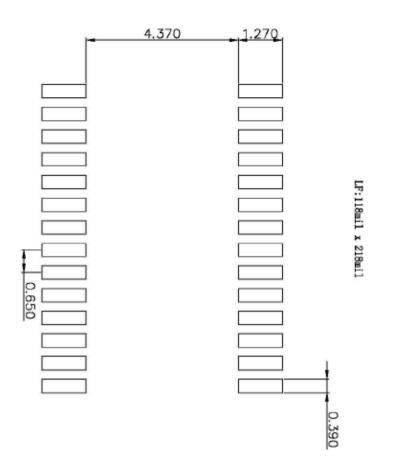

## 21.5 CLASSIFICATION REFLOW PROFILES

Package Thickness	Volume mm3<350	Volume mm3: 350-2000	Volume mm3>2000
<1.6 mm	260°C	260°C	260°C
1.6 mm-2.5 mm	260°C	250°C	245°C

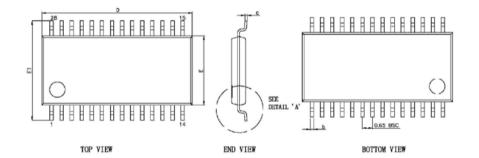


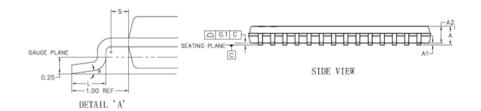
>=2.5 mm	250°C	245°C	245°C

Profile Feature	Pb-Free Assembly
Ramp-Up Rate (TL to Tp)	3 °C / second max.
Preheat – Temperature Min (Tsmin) to Max (Tsmax)	150~200 °C
–To,e (tsmin to tsmax)	60-120 seconds
Time maintained above – Temperature (TL)	217 °C
– Time (tL)	60-150 seconds
Peak package body temperature (Tp)(Note 2)	See package classification
Time within 5°C of specified classification Temperature (tp)	30 second min. (Note 3)
Ramp-Down Rate (Tp to TL)	6 °C / second max.
Time 25 °C to Peak Temperature	8 minutes max.
Number of applicable Temperature cycles	3 cycles max.





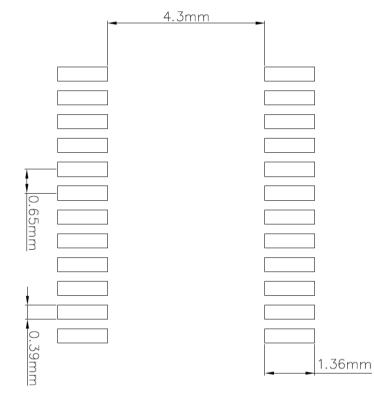


#### 22 Packaging Outline


22.1 28-pin TSSOP

#### **RECOMMENDED LAND PATTERN**

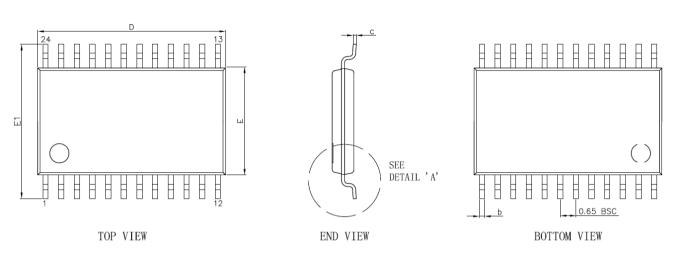


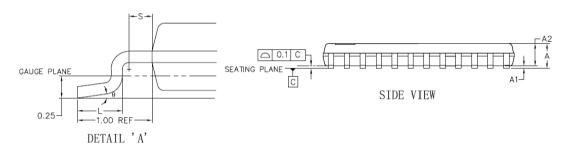
POD






SYMBOL	MILLIMETER			
STMDUL	MIN	NOM	MAX	
А	-	-	1.20	
A1	0.00	-	0.15	
A2	0.80	0.90	1.05	
D	9.60	9.70	9.80	
E	4.30	4.40	4.50	
E1	6	6.40BS	0	
L	0.45	0.60	0.75	
b	0.19	-	0.30	
S	0.20	-	-	
С	0.09	-	0.20	
θ	<b>0</b> °	-	<b>8</b> °	

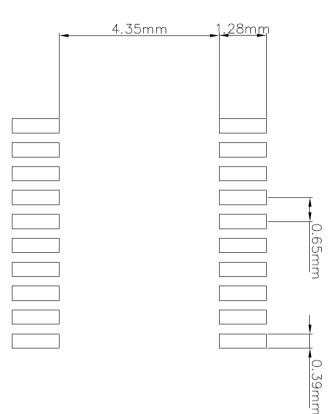




#### 22.2 24-pin TSSOP



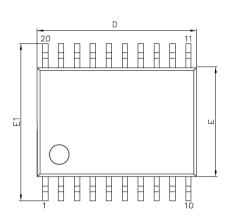


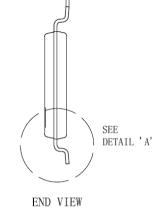
POD



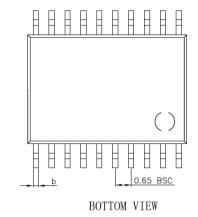


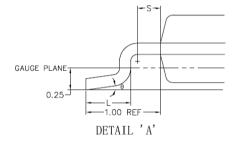

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
Α	—	—	1.20	
A1	0.05	—	0.15	
A2	0.80	1.00	1.05	
D	7.70	7.80	7.90	
E	4.30	4.40	4.50	
E1	6. 40BSC			
L	0.45	0.60	0.75	
b	0.19	—	0.30	
s	0.20	_		
с	0.09	_	0.20	
θ	0°	_	8°	



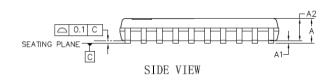


#### 22.3 20-pin TSSOP







POD





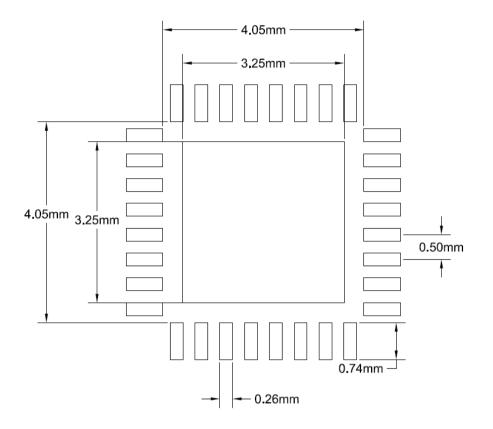

С





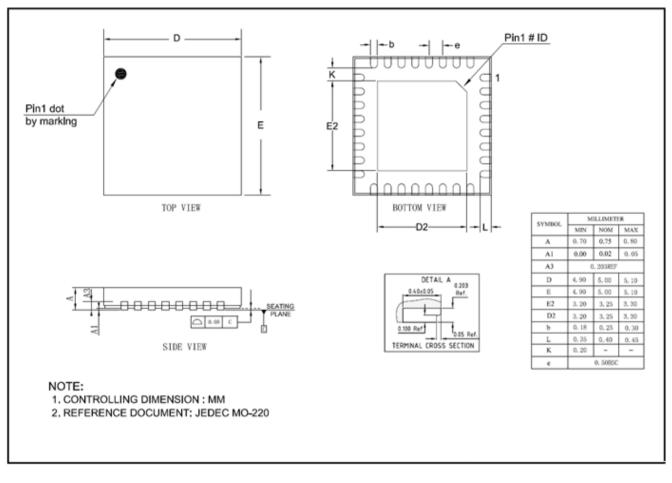
TOP VIEW



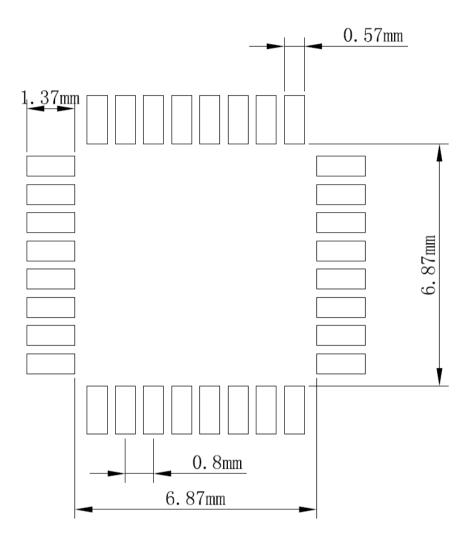

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
Α	_	—	1.20	
A1	0.05	—	0.15	
A2	0.80	1.00	1.05	
D	6.40	6.50	6.60	
Е	4.30	4.40	4.50	
E1		6.40BSC		
L	0.45	0.60	0.75	
b	0.19	—	0.30	
S	0.20	_	—	
с	0.09	_	0.20	
θ	0°	_	8°	

#### Notes:

- 1. Controlling dimension: mm
- 2. Reference document: JEDEC M0-153




#### 22.4 32-pin WQFN






POD



#### 22.5 32-pin LQFP





MAX

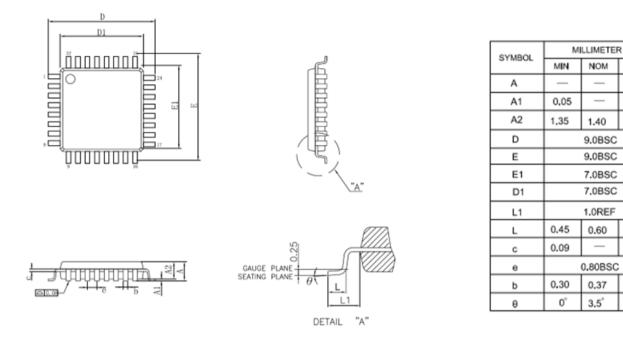
1.60

0,15

1.45

0.75

0.20


0.45

7°

_

_

POD



Notes:

- Controlling dimension: mm 1.
- 2. Reference document: JEDEC MS-026

# LUMISSIL MICROSYSTEMS

### IS32CS8977

#### 23 Ordering Information

Temperature Range: -40°C to 125°C

Order Part No.	Package	QTY/Reel	Remark
IS32CS8977A-ZNLA3-TR	TSSOP-28, Lead-free	2500/Reel	
IS32CS8977B-ZNLA3-TR	TSSOP-24, Lead-free	2500/Reel	
IS32CS8977C-ZNLA3-TR	TSSOP-20, Lead-free	2500/Reel	
IS32CS8977-LQLA3	LQFP-32, Lead-free	250/Tray 2500/Box	
IS32CS8977-QWLA3-TR	WQFN-32, Lead-free	2500/Reel	

Copyright © 2023 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assumes all such risks; and

c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances



#### 24 Revisions

Revision	Detailed Information	Date
00A	Previous Release	2020.11.03
A	<ol> <li>Add "Bits 4~7 of RSTCMD register can't be read". The above description is from Section 1.22 Reset - RSTCMD register</li> <li>Revise CS[4-0] of PWMCFG1 as below. CS[4-0] PWM Counting Clock Scaling The counting clock is (SYSCLK / (CS[4-0] + 1)). (PWM_Clock = (counting clock / 8192) for 12- bit configuration) (PWM_Clock = (counting clock / 2048) for 10- bit configuration) (PWM_Clock = (counting clock / 512) for 8-bit configuration) (PWM_Clock = (counting clock / 512) for 8-bit configuration)</li> <li>Revise "IOSC uses VDDC (instead of early description VDD15) as power supply and can be calibrated and trimmed." The above description is from Section 12.1 IOSC 16MHz/32MHz</li> <li>Revise RSTN Reset voltage VIHRS, VILRS and VRSHYS The above description is from Section 21.3 DC Electrical Characteristics</li> <li>Revise GPIO DC Characteristics REQAN1, and REQAN2 The above description is from Section 21.3 DC Electrical Characteristics</li> <li>Revise TCON register description. The above description applies to TCON descriptions in Section 1.5 Interrupt System and Section 1.9 System Timers – T0 and T1</li> <li>TA/TB Protect support modification: * Remove TA Protect support for register WTST * Only support bit 0 RWT of WDCON register for TA Protect * Remove TB Protect support for register SLSHDATL, FLSHDATH, FLSHADL and FLSHADH * TB Protect support for register LVDCFG except bit 0 LVTIF</li> <li>Revise some typos</li> <li>Reword some contents for clear explanations</li> <li>WTST wait state cycle modification. For example, default WTST=0x07</li> </ol>	2022.09.26
В	<ol> <li>Update WTST description as "WTST holds the information about Program Memory access time" and modify "Wait State Cycle" as "Access Time (SYSCLK)" in the WTST setting table. The above description is from <u>1.2 Addressing Timing and Memory Modes</u></li> <li>Add "Halogen-Free compliant" claim for product features</li> <li>Reword some contents for clear explanations</li> <li>Modify assertion extension delay at reset scheme from 4ms to 130us at <u>Section 1.22 Reset</u></li> </ol>	2022.09.28

