

Adafruit QT Py SAMD21

Created by Kattni Rembor

https://learn.adafruit.com/adafruit-qt-py

Last updated on 2023-11-25 11:28:34 PM EST

©Adafruit Industries Page 1 of 228

9

12

15

19

19

21

23

25

30

33

Table of Contents

Overview

Update the UF2 Bootloader

• Check your Bootloader Version

• Download the Bootloader Updater

• Update and Check the Version

Pinouts

• Power Pins

• Input/Output Pins

• General Purpose / Analog Inputs

• I2C Pins

• Hardware Serial Pins

• SPI Pins

• Onboard Neopixel pins

• Capacitive touch pins

• Analog output pin

• Analog input pins

• PWM output pins

• I2S pins

• SWD Debug Pins

• Reverse Side SPI FLASH

About STEMMA QT

What is CircuitPython?

• CircuitPython is based on Python

• Why would I use CircuitPython?

CircuitPython

• Set up CircuitPython Quick Start!

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

©Adafruit Industries Page 2 of 228

36

40

51

56

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit Learn Guide Project Bundle

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

• CircUp CLI Tool

Frequently Asked Questions

• Using Older Versions

• Python Arithmetic

• Wireless Connectivity

• Asyncio and Interrupts

• Status RGB LED

• Memory Issues

• Unsupported Hardware

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?

• macOS Sonoma 14.x: Disk Errors Writing to CIRCUITPY

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear or Disappears Quickly

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

©Adafruit Industries Page 3 of 228

75

78

87

88

94

95

100

107

112

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

"Uninstalling" CircuitPython

• Backup Your Code

• Moving Circuit Playground Express to MakeCode

• Moving to Arduino

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

CircuitPython Essentials

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

CircuitPython Built-Ins

• Thing That Are Built In and Work

• Flow Control

• Math

• Tuples, Lists, Arrays, and Dictionaries

• Classes, Objects and Functions

• Lambdas

• Random Numbers

CircuitPython Digital In & Out

• Find the pins!

• Read the Docs

CircuitPython Analog In

• Creating the analog input

• get_voltage Helper

• Main Loop

• Changing It Up

• Wire it up

• Reading Analog Pin Values

CircuitPython Analog Out

• Creating an analog output

• Setting the analog output

• Main Loop

• Find the pin

CircuitPython Audio Out

• Play a Tone

©Adafruit Industries Page 4 of 228

121

132

138

143

149

156

163

• Play a Wave File

• Wire It Up

CircuitPython PWM

• PWM with Fixed Frequency

• Create a PWM Output

• Main Loop

• PWM Output with Variable Frequency

• Installing Project Code

• Wire it up

• Where's My PWM?

CircuitPython Servo

• Servo Wiring

• Standard Servo Code

• Continuous Servo Code

CircuitPython Cap Touch

• Create the Touch Input

• Main Loop

• Find the Pin(s)

CircuitPython Internal RGB LED

• Create the LED

• Brightness

• Main Loop

• Making Rainbows (Because Who Doesn't Love 'Em!)

• Circuit Playground Express Rainbow

CircuitPython NeoPixel

• Wiring It Up

• The Code

• Create the LED

• NeoPixel Helpers

• Main Loop

• NeoPixel RGBW

• The Code

• Read the Docs

CircuitPython DotStar

• Wire It Up

• The Code

• Create the LED

• DotStar Helpers

• Main Loop

• Is it SPI?

• Read the Docs

CircuitPython UART Serial

• The Code

• Wire It Up

• Where's my UART?

• Trinket M0: Create UART before I2C

©Adafruit Industries Page 5 of 228

170

179

186

191

192

196

198

206

206

CircuitPython I2C

• Wire It Up

• Find Your Sensor

• I2C Sensor Data

• Installing Project Code

• Where's my I2C?

CircuitPython HID Keyboard and Mouse

• CircuitPython Keyboard Emulator

• Create the Objects and Variables

• The Main Loop

• Non-US Keyboard Layouts

• CircuitPython Mouse Emulator

• Create the Objects and Variables

• CircuitPython HID Mouse Helpers

• Main Loop

CircuitPython Storage

• boot.py

• Installing Project Code

• Logging the Temperature

CircuitPython CPU Temp

CircuitPython Expectations

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?

• Switching Between CircuitPython and Arduino

• The Difference Between Express And Non-Express Boards

• Non-Express Boards: Gemma, Trinket, and QT Py

• Differences Between CircuitPython and MicroPython

• Differences Between CircuitPython and Python

Arduino IDE Setup

Using with Arduino IDE

• Install SAMD Support

• Install Adafruit SAMD

• Install Drivers (Windows 7 & 8 Only)

• Blink

• Successful Upload

• Compilation Issues

• Manually bootloading

• Ubuntu & Linux Issue Fix

NeoPixel Blink

Adapting Sketches to M0 & M4

• Analog References

• Pin Outputs & Pullups

• Serial vs SerialUSB

• AnalogWrite / PWM on Feather/Metro M0

• analogWrite() PWM range

• analogWrite() DAC on A0

• Missing header files

©Adafruit Industries Page 6 of 228

215

227

• Bootloader Launching

• Aligned Memory Access

• Floating Point Conversion

• How Much RAM Available?

• Storing data in FLASH

• Pretty-Printing out registers

• M4 Performance Options

• CPU Speed (overclocking)

• Optimize

• Cache

• Max SPI and Max QSPI

• Enabling the Buck Converter on some M4 Boards

UF2 Bootloader Details

• Entering Bootloader Mode

• Using the Mass Storage Bootloader

• Using the BOSSA Bootloader

• Running bossac on the command line

• Updating the bootloader

• Getting Rid of Windows Pop-ups

• Making your own UF2

• Installing the bootloader on a fresh/bricked board

Downloads

• Files

• Schematic & Fabrication Print

©Adafruit Industries Page 7 of 228

©Adafruit Industries Page 8 of 228

Overview

What a cutie pie! Or is it... a QT Py? This diminutive dev board comes with our favorite

li'l chip, the SAMD21 (as made famous in our GEMMA M0 and Trinket M0 boards).

This time it comes with our favorite connector - the STEMMA QT (), a chainable I2C

port that can be used with any of our STEMMA QT sensors and accessories ().

OLEDs ()! Inertial Measurment Units ()! Sensors a-plenty (). All plug-and-play thanks to

the innovative chainable design: SparkFun Qwiic ()-compatible STEMMA QT () connect

ors for the I2C bus so you don't even need to solder! Just plug in a compatible cable

©Adafruit Industries Page 9 of 228

http://adafruit.com/stemma
https://www.adafruit.com/category/620
https://www.adafruit.com/?q=qt+oled&main_page=category&cPath=1005&sort=BestMatch
https://www.adafruit.com/?q=qt+imu&main_page=category&cPath=1005&sort=BestMatch
https://www.adafruit.com/?q=qt+sensor&main_page=category&cPath=1005&sort=BestMatch
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt

and attach it to your MCU of choice, and you’re ready to load up some software and

measure some light.

Use any SparkFun Qwiic () boards! Seeed Grove I2C boards () will also work with an

adapter cable.

The pinout and shape is Seeed Xiao () compatible, with castellated pads so you can

solder it flat to a PCB. In addition to the QT connector, we also added an RGB

NeoPixel (with controllable power pin to allow for ultra-low-power usage), and a reset

button (great for restarting your program, or entering the bootloader).

Runs Arduino like a dream, and can be used for basic CircuitPython projects. For

more advanced usage like datalogging or file storage, solder an SOIC SPI flash chip

onto the bottom pads.

©Adafruit Industries Page 10 of 228

http://www.sparkfun.com/qwiic
https://www.adafruit.com/product/4528
https://wiki.seeedstudio.com/Seeeduino-XIAO/

Same size, form-factor, and pin-out as Seeed Xiao

ATSAMD21E18 32-bit Cortex M0+ - 48 MHz 32 bit processor with 256KB Flash

and 32 KB RAM

Native USB supported by every OS - can be used in Arduino or CircuitPython as

USB serial console, MIDI, Keyboard/Mouse HID, even a little disk drive for

storing Python scripts.

Can be used with Arduino IDE or CircuitPython

Built in RGB NeoPixel LED

11 GPIO pins:

True analog output on one I/O pin - can be used to play 10-bit quality audio

clips in Arduino (CircuitPython does not have storage for audio clips)

9 x 12-bit analog inputs (SDA/SCL do not have analog inputs)

1 x Optional AREF on A1

9 x PWM outputs (A0 is analog out, A1 is not PWM capable)

Hardware I2C port with STEMMA QT plug-n-play connector

Hardware UART

Hardware SPI

Hardware I2S

6 x Capacitive Touch with no additional components required

3.3V regulator with 600mA peak output ()

Optional SOIC-8 SPI Flash chip on bottom ()

Reset switch for starting your project code over or entering bootloader mode

USB Type C connector

Really, really small

•

•

•

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•

•

•

©Adafruit Industries Page 11 of 228

https://www.diodes.com/assets/Datasheets/AP2112.pdf
https://www.diodes.com/assets/Datasheets/AP2112.pdf
https://www.adafruit.com/product/4763

Update the UF2 Bootloader

Your QT Py (SAMD21 microcontroller version) board bootloader may need to be

updated to fix an intermittent bug that can erase parts of internal flash. There are two

possible problems:

In some recent samples of the QT Py board, the bootloader is not protected

against overwriting. Updating the bootloader automatically sets this protection.

In bootloader version v3.15.0 and later, the board will check the supplied voltage

and will not start if supplied voltage is below approximately 2.8 volts. This

prevents exercising an intermittent hardware bug that erases parts of internal

flash.

The combination of these two issues means that in some cases, the bootloader may

be erased. This is not fixable without considerable effort, such as using a J-Link

debugging probe or openocd to rewrite the bootloader. Updating the bootloader will

prevent this problem.

Update the Bootloader on QT Py SAMD21 board to prevent a somewhat rare

problem of parts of internal flash being overwritten on power-up.

1.

2.

©Adafruit Industries Page 12 of 228

Check your Bootloader Version

To see if you need to update your bootloader, double-click the RESET button to get

the UF2 boot drive to appear as a mounted drive on your computer, in a file browser

window.

When you see the QTPY_BOOT drive, click the drive in the file browser window and

then double-click the INFO_UF2.TXT file to see what's inside.

The bootloader version is listed in INFO_UF2.TXT. If the bootloader version you see is

v3.14.0 or older, you need to update. In this example, the version is v3.14.0, and needs

upgrading.

UF2 Bootloader v3.14.0 SFHWRO

Model: QT Py M0

Board-ID: SAMD21E18A-QTPy-v0

Download the Bootloader Updater

Download the latest version of the bootloader updater from the https://

www.circuitpython.org Downloads page for the QT Py:

Latest QT Py M0 Downloads

©Adafruit Industries Page 13 of 228

https://circuitpython.org/board/qtpy_m0/

The bootloader updater will be named update-bootloader-QTPy_m0-v3.15.0.uf2 or

some later version.

Update and Check the Version

Drag the update-bootloader-QTPy_m0-v3.15.0.uf2 (or later version) file you

downloaded from your Downloads folder onto the QTPY_BOOT drive. The NeoPixel

on the board will change color and then go back to green, and the QTPY_BOOT drive

will re-appear in the file browser. After that, you can click on the QTPY_BOOT drive

and double-click INFO_UF2.TXT again to confirm you've updated the bootloader to

the latest version.

UF2 Bootloader v3.15.0 SFHWRO

Model: QT Py M0

Board-ID: SAMD21E18A-QTPy-v0

©Adafruit Industries Page 14 of 228

Pinouts

Click here to view a PDF version of the pinout diagram ()

Power Pins

3V - this is the regulated output from the onboard regulator. You can draw

500mA

5V - This is 5v out from the USB port. You can also use this as a voltage input

but you must have some sort of diode (schottky, signal, power, really anything)

between your external power source and this pin with anode to battery, cathode

to 5V pin. Note that you cannot power the USB port by supplying 5V to this pin:

there is a protection diode that prevents the 5V from reaching the USB

connector. This is to protect host computer USB ports, etc. You can draw 1A

peak through the diode, but we recommend keeping it lower than that, about

500mA

•

•

©Adafruit Industries Page 15 of 228

https://github.com/adafruit/Adafruit-QT-Py-PCB/blob/master/Adafruit%20QT%20Py%20SAMD21%20pinout.pdf
https://github.com/adafruit/Adafruit-QT-Py-PCB/blob/master/Adafruit%20QT%20Py%20SAMD21%20pinout.pdf

GND - Power/data/signal ground

Input/Output Pins

General Purpose / Analog Inputs

A0 / D0 - Digital/analog GPIO pin 0. Can act as a true analog output with 10 bit

precision, but does not have PWM. Can also be a capacitive touch input.

A1 / D1 - Digital/analog GPIO pin 1. Can be a capacitive touch input or an AREF

pin.

A2 / D2 - Digital/analog GPIO pin 2. Can act as PWM or capacitive touch input.

A3 / D3 - Digital/analog GPIO pin 3. Can act as PWM or capacitive touch input.

I2C Pins

SDA / D4 - This is the I2C data pin and digital pin 4, can also be a PWM. There is

no analog on this pin! There's no pull up on this pin by default so when using

with I2C, you may need a 2.2K-10K pullup on each to 3.3V. All our STEMMA QT

breakouts have the pullup installed on the breakout PCB.

SCL / D5 - This is the I2C clock pin and digital pin 5, can also be a PWM. There

is no analog on this pin! There's no pull up on this pin by default so when using

with I2C, you may need a 2.2K-10K pullup on each to 3.3V

STEMMA QT () - This connector allows you to connect over I2C (without soldering!) to

breakout boards with STEMMA QT connectors or to other things with various

associated accessories (). In CircuitPython, you can use the STEMMA connector

with board.SCL and board.SDA , or board.STEMMA_I2C() .

Hardware Serial Pins

TX / A6 / D6 - Transmit (output) for Serial1. Also analog/digital GPIO 6. Can act as

PWM or capacitive touch input.

RX / A7 / D7 - Receive (input) for Serial1. Also analog/digital GPIO 7. Can act as

PWM or capacitive touch input.

SPI Pins

SCK / A8 / D8 - Hardware SPI clock pin. Also analog/digital GPIO 8. Can act as

PWM output.

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 16 of 228

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204

MI / A9 / D9 - Hardware SPI MISO microcontroller in serial out pin. Also analog/

digital GPIO 9. Can act as PWM output.

MO / A10 / D10 - Hardware SPI MOSI microcontroller out serial in pin. Also

analog/digital GPIO 10. Can act as PWM output.

Onboard Neopixel pins

There is a very tiny NeoPixel that is connected to digital pin 11 for signal. If you would

like to turn off the pixel for low power usage, set pin 12 low. By default pin 12 is set

high for you by Arduino/CircuitPython

Capacitive touch pins

A0, A1, A2, A3, A6 (TX), A7 (RX) can be capacitive touch pins without the need for a

separate driver pin.

Analog output pin

Only A0 can be a true analog output (not PWM!) at 10-bit resolution

Analog input pins

All pins except for SDA/SCL can be analog inputs with 12-bit read resolution

PWM output pins

Only A0 and A1 cannot be PWM output

I2S pins

Data pin is RX

Bit Clock pin is MOSI

Word Select pin is SCK

Only one data pin is available so you cannot have both I2S input and output.

•

•

•

•

•

©Adafruit Industries Page 17 of 228

SWD Debug Pins

On the bottom of the board are two pads.

On the left is SWCLK and on the right is

SWDIO. On the off chance you want to

reprogram your QT Py M0 or debug it

using a Cortex M0 SWD debug/

programmer, you will need to solder/

connect to these pads.

Reverse Side SPI FLASH

The QT Py microcontroller has 256KB flash for storage of code and code-embedded

files. In Circuitpython you will get a very small (~48KB) disk drive for your Python code

storage. But, say you want more! You can solder a chip onto the back of the QT Py to

add 2MB of SPI Flash storage. We have a pre-built 'haxpress' version of CircuitPython

() that supports the GD25Q16 flash chip. If you want to use a different flash chip, you'll

need to build your own version of CircuitPython with support for that chip enabled ().

GD25Q16 - 2MB SPI Flash in 8-Pin SOIC

package

These little chips are like miniature SSD

drives for your electronics. When you

don't need something with as much

storage as a micro SD card, but an

EEPROM is too small, SPI (or...

https://www.adafruit.com/product/4763

©Adafruit Industries Page 18 of 228

https://learn.adafruit.com//assets/99703
https://learn.adafruit.com//assets/99703
https://circuitpython.org/board/qtpy_m0_haxpress/
https://learn.adafruit.com/building-circuitpython/choosing-a-different-spi-flash-chip
https://www.adafruit.com/product/4763
https://www.adafruit.com/product/4763
https://www.adafruit.com/product/4763

Once soldered in, you can access the SPI

flash in Arduino on SPI1 and chip select pin

17. In CircuitPython, a 'haxpress' version of

the runtime will need to be installed, so it

knows to look for the larger filesystem.

There is more hardware support in the

haxpress CircuitPython build because we

can add more code to the internal flash

instead of using it for a filesystem

About STEMMA QT

About STEMMA QT ()

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and

learning to program on low-cost microcontroller boards. It makes getting started

easier than ever with no upfront desktop downloads needed. Once you get your

board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and

universities. It's a high-level programming language which means it's designed to be

easier to read, write and maintain. It supports modules and packages which means it's

easy to reuse your code for other projects. It has a built in interpreter which means

there are no extra steps, like compiling, to get your code to work. And of course,

Python is Open Source Software which means it's free for anyone to use, modify or

improve upon.

©Adafruit Industries Page 19 of 228

https://learn.adafruit.com//assets/95243
https://learn.adafruit.com//assets/95243
https://learn.adafruit.com/introducing-adafruit-stemma-qt

CircuitPython adds hardware support to all of these amazing features. If you already

have Python knowledge, you can easily apply that to using CircuitPython. If you have

no previous experience, it's really simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is

a board with a microcontroller chip that's essentially an itty-bitty all-in-one computer.

The board you're holding is a microcontroller board! CircuitPython is easy to use

because all you need is that little board, a USB cable, and a computer with a USB

connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the

file, and it runs immediately. There is no compiling, no downloading and no

uploading needed.

You're new to programming. CircuitPython is designed with education in mind.

It's easy to start learning how to program and you get immediate feedback from

the board.

Easily update your code. Since your code lives on the disk drive, you can edit it

whenever you like, you can also keep multiple files around for easy

experimentation.

The serial console and REPL. These allow for live feedback from your code and

interactive programming.

File storage. The internal storage for CircuitPython makes it great for data-

logging, playing audio clips, and otherwise interacting with files.

Strong hardware support. CircuitPython has builtin support for microcontroller

hardware features like digital I/O pins, hardware buses (UART, I2C, SPI), audio I/

O, and other capabilities. There are also many libraries and drivers for sensors,

breakout boards and other external components.

•

•

•

•

•

•

©Adafruit Industries Page 20 of 228

It's Python! Python is the fastest-growing programming language. It's taught in

schools and universities. CircuitPython is almost-completely compatible with

Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being

updated. Adafruit welcomes and encourages feedback from the community, and

incorporate it into the development of CircuitPython. That's the core of the open

source concept. This makes CircuitPython better for you and everyone who uses it!

CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation

and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and

edit files on the CIRCUITPY drive to iterate.

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

If you want to get started with your QT Py, and you have NOT soldered a chip to the

back of it, download CircuitPython from the following link:

Download the latest version of

CircuitPython for your QT Py from

CircuitPython.org

Download the latest version of

CircuitPython for your QT Py

Haxpress from CircuitPython.org

•

If you have soldered a GD25Q16 SPI flash chip to the bottom of your board, you

must use the Haxpress version of CircuitPython for the Adafruit QT Py for the

flash to work! If you have NOT soldered a SPI flash chip to your QT Py, do NOT

use this download! It will not give you 2MB of flash space without a chip!

©Adafruit Industries Page 21 of 228

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/qtpy_m0/
https://circuitpython.org/board/qtpy_m0_haxpress/

Click the link above and download the

latest UF2 file.

Download and save it to your desktop (or

wherever is handy).

Plug your QT Py into your computer using

a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the small RST (reset) button,

and you will see the NeoPixel RGB LED

turn green. If it turns red, check the USB

cable, try another USB port, etc.

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

©Adafruit Industries Page 22 of 228

https://learn.adafruit.com//assets/95209
https://learn.adafruit.com//assets/95209
https://learn.adafruit.com//assets/95210
https://learn.adafruit.com//assets/95210

You will see a new disk drive appear called

QTPY_BOOT.

Drag the adafruit_circuitpython_etc.uf2 file

to QTPY_BOOT

The red LED will flash. Then, the

QTPY_BOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

©Adafruit Industries Page 23 of 228

https://learn.adafruit.com//assets/95211
https://learn.adafruit.com//assets/95211
https://learn.adafruit.com//assets/95212
https://learn.adafruit.com//assets/95212
https://learn.adafruit.com//assets/95213
https://learn.adafruit.com//assets/95213

Download and Install Mu

Download Mu from https://codewith.mu ().

Click the Download link for downloads and

installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the lower

right corner of the window, next to the

"gear" icon. If the mode says "Microbit" or

something else, click the Mode button in

the upper left, and then choose

"CircuitPython" in the dialog box that

appears.

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

©Adafruit Industries Page 24 of 228

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681

Mu attempts to auto-detect your board on

startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board and

ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

©Adafruit Industries Page 25 of 228

https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page () has more details. Otherwise, make sure you do

"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you

aren't using Mu. (This was formerly not a problem on macOS, but see the warning

below.)

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your editor,

and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

macOS Sonoma (14.x) introduced a bug that delays writes to small drives such as

CIRCUITPY drives. This causes errors when saving files to CIRCUITPY. For a

workaround, see https://learn.adafruit.com/welcome-to-circuitpython/

troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

©Adafruit Industries Page 26 of 228

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example ().

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them, and

they're indented exactly the same amount.

All the lines before that have no spaces

before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 27 of 228

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on your

CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 28 of 228

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY

Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board

guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

while True:

 led.value = True

©Adafruit Industries Page 29 of 228

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx

t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

©Adafruit Industries Page 30 of 228

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen here,

letting you know no CircuitPython board

was found and indicating where your code

will be stored until you plug in a board.

If you are using Windows 7, make sure you

installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

©Adafruit Industries Page 31 of 228

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the

modemmanager service might be interfering. Just remove it; it doesn't have much use

unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

Serial Console on Linux () for details on how to add yourself to the right group.

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 32 of 228

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

©Adafruit Industries Page 33 of 228

file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

©Adafruit Industries Page 34 of 228

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = Tru

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

©Adafruit Industries Page 35 of 228

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

©Adafruit Industries Page 36 of 228

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

©Adafruit Industries Page 37 of 228

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

©Adafruit Industries Page 38 of 228

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

©Adafruit Industries Page 39 of 228

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

CircuitPython Libraries

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

©Adafruit Industries Page 40 of 228

https://circuitpython.org/downloads

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs () are an excellent reference for how it all should work. In Python terms, you can

place our library files in the lib directory because it's part of the Python path by

default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 41 of 228

https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn

System is by utilising the Project Bundle. Most guides now have a Download Project

Bundle button available at the top of the full code example embed. This button

downloads all the necessary files, including images, etc., to get the guide project up

and running. Simply click, open the resulting zip, copy over the right files, and you're

good to go!

The first step is to find the Download Project Bundle button in the guide you're

working on.

The Download Project Bundle button downloads a zip file. This zip contains a series

of directories, nested within which is the code.py, any applicable assets like images or

The Download Project Bundle button is only available on full demo code

embedded from GitHub in a Learn guide. Code snippets will NOT have the

button available.

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it

will replace all the existing content! If you don't want to lose anything, ensure you

copy your current code to your computer before you copy over the new Project

Bundle content!

©Adafruit Industries Page 42 of 228

audio, and the lib/ folder containing all the necessary libraries. The following zip was

downloaded from the Piano in the Key of Lime guide.

When you open the zip, you'll find some nested directories. Navigate through them

until you find what you need. You'll eventually find a directory for your CircuitPython

version (in this case, 7.x). In the version directory, you'll find the file and directory you

need: code.py and lib/. Once you find the content you need, you can copy it all over

to your CIRCUITPY drive, replacing any files already on the drive with the files from

the freshly downloaded zip.

Once you copy over all the relevant files, the project should begin running! If you find

that the project is not running as expected, make sure you've copied ALL of the

project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

The Piano in the Key of Lime guide was chosen as an example. That guide is

specific to Circuit Playground Express, and cannot be used on all boards. Do not

expect to download that exact bundle and have it work on your non-CPX

microcontroller.

In some cases, there will be other files such as audio or images in the same

directory as code.py and lib/. Make sure you include all the files when you copy

things over!

©Adafruit Industries Page 43 of 228

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library

Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

©Adafruit Industries Page 44 of 228

https://circuitpython.org/libraries

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

©Adafruit Industries Page 45 of 228

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

•

•

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

©Adafruit Industries Page 46 of 228

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

•

•

•

•

©Adafruit Industries Page 47 of 228

In the Interacting with the REPL section () on The REPL page () in this guide, the

help("modules") command is discussed. This command provides a list of all of the

built-in modules available in CircuitPython for your board. So, if you connect to the

serial console on your board, and enter the REPL, you can run help("modules") to

see what modules are available for your board. Then, as you read through the impor

t statements, you can, for the purposes of figuring out which libraries to load, ignore

the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

©Adafruit Industries Page 48 of 228

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing

Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

©Adafruit Industries Page 49 of 228

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportEr

ror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page ().

©Adafruit Industries Page 50 of 228

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

Updating CircuitPython Libraries and

Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to

easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the

command circup update in a terminal to interactively update all libraries on the

connected CircuitPython device. See the usage page in the CircUp guide () for a full

list of functionality

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)

CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

Using Older Versions

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

©Adafruit Industries Page 51 of 228

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads

I have to continue using CircuitPython 7.x or earlier.

Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 7.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest version ()

and use the current version of the libraries (). However, if for some reason you

cannot update, here are the last available library bundles for older versions:

2.x bundle ()

3.x bundle ()

4.x bundle ()

5.x bundle ()

6.x bundle ()

7.x bundle ()

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the

microcontroller chip does not support floating point in hardware. Floating point

numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note

that this is two bits less than standard 32-bit single-precision floats. You will get

about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

Does CircuitPython support long integers, like regular

Python?

Python long integers (integers of arbitrary size) are available on most builds, except

those on boards with the smallest available firmware size. On these boards,

integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards without an

external flash chip, such as the Adafruit Gemma M0, Trinket M0, QT Py M0, and the

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

•

•

•

•

•

©Adafruit Industries Page 52 of 228

https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20231003/adafruit-circuitpython-bundle-7.x-mpy-20231003.zip

Trinkey series. There are also a number of third-party boards in this category.

There are also a few small STM third-party boards without long integer support.

time.localtime() , time.mktime() , time.time() , and

time.monotonic_ns() are available only on builds with long integers.

Wireless Connectivity

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board that is

running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can

check out this guide () on using AirLift with CircuitPython - extra wiring is required

and some boards like the MacroPad or NeoTrellis do not have enough available

pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,

check out the Adafruit Learn System ().

How do I do BLE (Bluetooth Low Energy) with

CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE

implementation. Your program can act as both a BLE central and peripheral. As a

central, you can scan for advertisements, and connect to an advertising board. As a

peripheral, you can advertise, and you can create services available to a central.

Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE

implementation. Your program can act as a central, and connect to a peripheral.

You can advertise, but you cannot create services. You cannot advertise

anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note

that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with

AirLift () or other NINA-FW-based co-processors. Some boards have this

coprocessor on board, such as the PyPortal (). Currently, this implementation only

©Adafruit Industries Page 53 of 228

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble

supports acting as a BLE peripheral. Scanning and connecting as a central are not

yet implemented. Bonding and pairing are not supported.

Are there other ways to communicate by radio with

CircuitPython?

Check out Adafruit's RFM boards ()for simple radio communication supported by

CircuitPython, which can be used over distances of 100m to over a km, depending

on the version. The RFM SAMD21 M0 boards can be used, but they were not

designed for CircuitPython, and have limited RAM and flash space; using the RFM

breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except

the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in

CircuitPython () Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for

multitasking / 'threaded' control of your code

Status RGB LED

My RGB NeoPixel/DotStar LED is blinking funny colors -

what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

©Adafruit Industries Page 54 of 228

https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle () for your version of

CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (). Builds are

available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the

latest mpy-cross whose version matches the version of CircuitPython you are

using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

©Adafruit Industries Page 55 of 228

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why

not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have

added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run

CircuitPython?

No.

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 56 of 228

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Always Run the Latest Version of

CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

I have to continue using CircuitPython 7.x or earlier.

Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 7.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

macOS Sonoma 14.x: Disk Errors Writing to

CIRCUITPY

macOS Sonoma takes many seconds to complete writes to small FAT drives, 8MB or

smaller. This causes errors when writing to CIRCUITPY. The best solution is to

remount the CIRCUITPY drive after it is automatically mounted. Or consider

downgrading back to Ventura if that works for you.

Here is a shell script to do this remount conveniently (courtesy @czei in GitHub ()).

Copy the code here into a file named, say, remount-CIRCUITPY.sh. Place the file in a

directory on your PATH, or in some other convenient place.

#!/bin/csh

#

This works around bug where, by default, macOS 14.x writes part of a file

©Adafruit Industries Page 57 of 228

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
https://github.com/adafruit/circuitpython/issues/8449#issuecomment-1779981373

immediately, and then doesn't update the directory for 20-60 seconds, causing

the file system to be corrupted.

#

set disky=`df | grep CIRCUITPY | cut -d" " -f1`

sudo umount /Volumes/CIRCUITPY

sudo mkdir /Volumes/CIRCUITPY

sleep 2

sudo mount -v -o noasync -t msdos $disky /Volumes/CIRCUITPY

Then in a Terminal window, do this to make this script executable:

chmod +x remount-CIRCUITPY.sh

Place the file in a directory on your PATH , or in some other convenient place.

Now, each time you plug in or reset your CIRCUITPY board, run the file remount-

CIRCUITPY.sh. You can run it in a Terminal window or you may be able to place it on

the desktop or in your dock to run it just by double-clicking.

This will be something of a nuisance but it is the safest solution.

This problem is being tracked in this CircuitPython issue ().

Bootloader (boardnameBOOT) Drive Not

Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader ()installed. The Feather M0 Basic, Feather M0 Adalogger, and similar

boards use a regular Arduino-compatible bootloader, which does not show a boardna

meBOOT drive.

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the

reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will

not work.

©Adafruit Industries Page 58 of 228

https://github.com/adafruit/circuitpython/issues/8449
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode

macOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here ().

Windows 7 and 8.1 have reached end of life. It is recommended () that you upgrade to

Windows 10 if possible; an upgrade is probably still free for you. Check here ().

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does

not work for you!

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not available. There are no plans to release drivers for new

boards. The boards work fine on Windows 10.

©Adafruit Industries Page 59 of 228

https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord

Windows Explorer Locks Up When

Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive

Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear or

Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the

BOOT drive to reappear. It is not clear what causes this behavior.

•

•

•

•

©Adafruit Industries Page 60 of 228

https://forums.adafruit.com/viewtopic.php?f=60&t=187629

Samsung Magician can cause CIRCUITPY to disappear (reported here () and here ()).

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this link ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.

Unplug all the boards and other USB devices you want to clean up. Run the tool as

Administrator. You will see a listing like this, probably with many more devices. It is

listing all the USB devices that are not currently attached.

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying

Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

©Adafruit Industries Page 61 of 228

https://forums.adafruit.com/viewtopic.php?t=205159
https://forums.adafruit.com/viewtopic.php?p=987596#p987596
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " ()Acronis Managed

Machine Service Mini" ().

©Adafruit Industries Page 62 of 228

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.runtime.autoreload = False

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the

RESET button (or on Espressif, the BOOT button) during this time will restart the board

and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there

will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear

Bluetooth information and start the device in discoverable mode, so it can be used

with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

•

•

•

©Adafruit Industries Page 63 of 228

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 64 of 228

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

Serial console showing ValueError:

Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

©Adafruit Industries Page 65 of 228

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

©Adafruit Industries Page 66 of 228

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

©Adafruit Industries Page 67 of 228

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version () to do this.

Connect to the CircuitPython REPL () using Mu or a terminal program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

Feather M0 Express

Feather M4 Express

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 68 of 228

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2

Metro M0 Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

RP2040 boards (flash_nuke.uf2)

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam

eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

©Adafruit Industries Page 69 of 228

https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2
https://circuitpython.org/downloads

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (). You'll also need to load your code and reinstall your

libraries!

For SAMD21 non-Express boards that have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

 1. Download the erase file:

SAMD21 non-Express Boards

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython () .uf2 file to the

boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

©Adafruit Industries Page 70 of 228

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

For SAMD21 non-Express boards that do not have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (), which will erase and

re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-

Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

©Adafruit Industries Page 71 of 228

file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop

hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

©Adafruit Industries Page 72 of 228

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

©Adafruit Industries Page 73 of 228

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

©Adafruit Industries Page 74 of 228

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

"Uninstalling" CircuitPython

A lot of our boards can be used with multiple programming languages. For example,

the Circuit Playground Express can be used with MakeCode, Code.org CS

Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a

problem. You can always remove or reinstall CircuitPython whenever you want! Heck,

you can change your mind every day!

There is nothing to uninstall. CircuitPython is "just another program" that is loaded

onto your board. You simply load another program (Arduino or MakeCode) and it will

overwrite CircuitPython.

Backup Your Code

Before replacing CircuitPython, don't forget to make a backup of the code you have

on the CIRCUITPY drive. That means your code.py any other files, the lib folder etc.

You may lose these files when you remove CircuitPython, so backups are key! Just

drag the files to a folder on your laptop or desktop computer like you would with any

USB drive.

©Adafruit Industries Page 75 of 228

Moving Circuit Playground Express to

MakeCode

On the Circuit Playground Express (this currently does NOT apply to Circuit

Playground Bluefruit), if you want to go back to using MakeCode, it's really easy. Visit

makecode.adafruit.com () and find the program you want to upload. Click Download to

download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn

green and the ...BOOT directory shows up.

Then find the downloaded MakeCode .uf2 file and drag it to the CPLAYBOOT drive.

©Adafruit Industries Page 76 of 228

https://makecode.adafruit.com

Your MakeCode is now running and CircuitPython has been removed. Going forward

you only have to single click the reset button to get to CPLAYBOOT. This is an

idiosyncrasy of MakeCode.

Moving to Arduino

If you want to use Arduino instead, you just use the Arduino IDE to load an Arduino

program. Here's an example of uploading a simple "Blink" Arduino program, but you

don't have to use this particular program.

Start by plugging in your board, and double-clicking reset until you get the green

onboard LED(s).

Within Arduino IDE, select the matching board, say Circuit Playground Express.

Select the correct matching Port:

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

©Adafruit Industries Page 77 of 228

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has

uploaded successfully, the serial Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter

bootloader mode. Arduino will automatically reset when you upload.

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

©Adafruit Industries Page 78 of 228

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

©Adafruit Industries Page 79 of 228

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (). Everything you need to get

started with your new microcontroller and beyond is available. You can do things like

download CircuitPython for your microcontroller () or download the latest

CircuitPython Library bundle (), or check out which single board computers support

Blinka (). You can also get to various other CircuitPython related things like Awesome

CircuitPython or the Python for Microcontrollers newsletter. This is all incredibly

useful, but it isn't necessarily community related. So why is it included here? The Cont

ributing page ().

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (). You'll find

information pertaining to every Adafruit CircuitPython library GitHub repository, giving

you the opportunity to join the community by finding a contributing option that works

for you.

Note the date on the page next to Current Status for:

©Adafruit Industries Page 80 of 228

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://circuitpython.org/contributing

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 81 of 228

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries Page 82 of 228

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()

to walk you through the entire process. As well, there are always folks available on Di

scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

incredibly important to provide the best experience possible for all users.

©Adafruit Industries Page 83 of 228

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page () is an excellent

place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (), and the CircuitPython

libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"

. For the libraries, head over to the Contributing page Issues list (), and use the drop

down menu to search for "good first issue ()". These issues are things that have been

identified as something that someone with any level of experience can help with.

These issues include options like updating documentation, providing feedback, and

fixing simple bugs. If you need help getting started with GitHub, there is an excellent

guide on Contributing to CircuitPython with Git and GitHub ().

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

©Adafruit Industries Page 84 of 228

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific

library repository on GitHub. Be sure to include the steps to replicate the issue as well

as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid

support folks to answer any questions you may have. Whether your hardware is giving

you issues or your code doesn't seem to be working, the forums are always there for

you to ask. You need an Adafruit account to post to the forums. You can use the same

account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"

is the best place to post your CircuitPython questions.

©Adafruit Industries Page 85 of 228

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs () is a an excellent resource for a more detailed look at the

CircuitPython core and the CircuitPython libraries. This is where you'll find things like

API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation () page!

©Adafruit Industries Page 86 of 228

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

CircuitPython Essentials

You've gone through the Welcome to CircuitPython guide (). You've already gotten

everything setup, and you've gotten CircuitPython running. Great! Now what?

CircuitPython Essentials!

There are a number of core modules built into CircuitPython and commonly used

libraries available. This guide will introduce you to these and show you an example of

how to use each one.

Each section will present you with a piece of code designed to work with different

boards, and explain how to use the code with each board. These examples work with

any board designed for CircuitPython, including Circuit Playground Express, Trinket

M0, Gemma M0, QT Py, ItsyBitsy M0 Express, ItsyBitsy M4 Express, Feather M0

Express, Feather M4 Express, Metro M4 Express, Metro M0 Express, Trellis M4

Express, and Grand Central M4 Express.

Some examples require external components, such as switches or sensors. You'll find

wiring diagrams where applicable to show you how to wire up the necessary

components to work with each example.

Let's get started learning the CircuitPython Essentials!

©Adafruit Industries Page 87 of 228

file:///home/welcome-to-circuitpython

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

(>>>) and run the following commands:

import board

dir(board)

©Adafruit Industries Page 88 of 228

Here is the output for the QT Py SAMD21. You may have a different board, and this list

will vary, based on the board.

The following pins have labels on the physical QT Py SAMD21 board: A0, A1, A2, A3,

SDA, SCL, TX, RX, SCK, MISO, and MOSI. You see that there are many more entries

available in board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py

SAMD21, pin A0 is labeled on the physical board silkscreen, but it is available in

CircuitPython as both A0 and D0 . For more information on finding all the names for a

given pin, see the What Are All the Available Pin Names? () section below.

The results of dir(board) for CircuitPython compatible boards will look similar to

the results for the QT Py SAMD21 in terms of the pin names, e.g. A0, D0, etc.

However, some boards, for example, the Metro ESP32-S2, have different styled pin

names. Here is the output for the Metro ESP32-S2.

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

©Adafruit Industries Page 89 of 228

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa

rd module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

This eliminates the need for the busio module, and simplifies the code. Behind the

scenes, the board.I2C() object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

until you need it, and provides the same object every time you need it. You can call

board.I2C() as many times as you like, and it will always return the same object.

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all

boards. They exist if there are board markings for the default pins for those

devices.

©Adafruit Industries Page 90 of 228

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, first, connect to the serial console.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/Pin_Map_Script/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2020 anecdata for Adafruit Industries

SPDX-FileCopyrightText: 2021 Neradoc for Adafruit Industries

SPDX-FileCopyrightText: 2021-2023 Kattni Rembor for Adafruit Industries

SPDX-FileCopyrightText: 2023 Dan Halbert for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Pin Map Script"""

import microcontroller

import board

try:

 import cyw43 # raspberrypi

except ImportError:

 cyw43 = None

board_pins = []

for pin in dir(microcontroller.pin):

 if (isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin) or

 (cyw43 and isinstance(getattr(microcontroller.pin, pin), cyw43.CywPin))):

 pins = []

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your

board documentation/pinout for the default busses.

©Adafruit Industries Page 91 of 228

 for alias in dir(board):

 if getattr(board, alias) is getattr(microcontroller.pin, pin):

 pins.append(f"board.{alias}")

 # Add the original GPIO name, in parentheses.

 if pins:

 # Only include pins that are in board.

 pins.append(f"({str(pin)})")

 board_pins.append(" ".join(pins))

for pins in sorted(board_pins):

 print(pins)

Here is the result when this script is run on QT Py SAMD21:

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

example, the first pin on the board is labeled A0. The first line in the output is board.

A0 board.D0 (PA02) . This means that you can access pin A0 in CircuitPython using

both board.A0 and board.D0 .

The pins in parentheses are the microcontroller pin names. See the next section for

more info on those.

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

an on-board sensor. The QT Py SAMD21 only has one on-board extra piece of

hardware, a NeoPixel LED, so there's only the one available in the list. But you can

also control whether or not power is applied to the NeoPixel, so there's a separate pin

for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

©Adafruit Industries Page 92 of 228

aliases to the microcontroller pin names. If you look at the datasheet for your

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin module. As with board , you can run dir(mi

crocontroller.pin) in the REPL to receive a list of the microcontroller pin names.

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board or digitalio in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here () and the Python-like modules included here ().

However, not every module is available for every board due to size constraints or

hardware limitations. How do you find out what modules are available for your board?

There are two options for this. You can check the support matrix (), and search for

your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

©Adafruit Industries Page 93 of 228

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

CircuitPython Built-Ins

CircuitPython comes 'with the kitchen sink' - a lot of the things you know and love

about classic Python 3 (sometimes called CPython) already work. There are a few

things that don't but we'll try to keep this list updated as we add more capabilities!

Thing That Are Built In and Work

Flow Control

All the usual if , elif , else , for , while work just as expected.

Math

import math will give you a range of handy mathematical functions.

>>> dir(math)

['__name__', 'e', 'pi', 'sqrt', 'pow', 'exp', 'log', 'cos', 'sin',

'tan', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'copysign', 'fabs',

'floor', 'fmod', 'frexp', 'ldexp', 'modf', 'isfinite', 'isinf',

'isnan', 'trunc', 'radians', 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int and flo

at whenever you expect.

Tuples, Lists, Arrays, and Dictionaries

You can organize data in () , [] , and {} including strings, objects, floats, etc.

Classes, Objects and Functions

We use objects and functions extensively in our libraries so check out one of our

many examples like this MCP9808 library () for class examples.

This is not an exhaustive list! It's simply some of the many features you can use.

©Adafruit Industries Page 94 of 228

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808/blob/master/adafruit_mcp9808.py

Lambdas

Yep! You can create function-functions with lambda just the way you like em:

>>> g = lambda x: x**2

>>> g(8)

64

Random Numbers

To obtain random numbers:

import random

random.random() will give a floating point number from 0 to 1.0 .

random.randint(min, max) will give you an integer number between min and ma

x .

CircuitPython Digital In & Out

The first part of interfacing with hardware is being able to manage digital inputs and

outputs. With CircuitPython, it's super easy!

This example shows how to use both a digital input and output. You can use a switch i

nput with pullup resistor (built in) to control a digital output - the built in red LED.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_Digitial_In_Out/ and

then click on the directory that matches the version of CircuitPython you're using and

copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 95 of 228

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Digital In Out example"""

import time

import board

from digitalio import DigitalInOut, Direction, Pull

LED setup.

led = DigitalInOut(board.LED)

For QT Py M0. QT Py M0 does not have a D13 LED, so you can connect an external

LED instead.

led = DigitalInOut(board.SCK)

led.direction = Direction.OUTPUT

For Gemma M0, Trinket M0, Metro M0 Express, ItsyBitsy M0 Express, Itsy M4

Express, QT Py M0

switch = DigitalInOut(board.D2)

switch = DigitalInOut(board.D5) # For Feather M0 Express, Feather M4 Express

switch = DigitalInOut(board.D7) # For Circuit Playground Express

switch.direction = Direction.INPUT

switch.pull = Pull.UP

while True:

 # We could also do "led.value = not switch.value"!

 if switch.value:

 led.value = False

 else:

 led.value = True

 time.sleep(0.01) # debounce delay

Note that we made the code a little less "Pythonic" than necessary. The if/else

block could be replaced with a simple led.value = not switch.value but we

wanted to make it super clear how to test the inputs. The interpreter will read the

digital input when it evaluates switch.value .

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0

Express, ItsyBitsy M4 Express, no changes to the initial example are needed.

For Feather M0 Express and Feather M4 Express, comment out switch =

DigitalInOut(board.D2) (and/or switch = DigitalInOut(board.D7)

Note: To "comment out" a line, put a # and a space before it. To "uncomment" a

line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 96 of 228

depending on what changes you already made), and uncomment switch =

DigitalInOut(board.D5) .

For Circuit Playground Express, you'll need to comment out switch =

DigitalInOut(board.D2) (and/or switch = DigitalInOut(board.D5)

depending on what changes you already made), and uncomment switch =

DigitalInOut(board.D7) .

For QT Py M0, you'll need to comment out led = DigitalInOut(board.LED) and

uncomment led = DigitalInOut(board.SCK) . The switch code remains the same.

To find the pin or pad suggested in the code, see the list below. For the boards that

require wiring, wire up a switch (also known as a tactile switch, button or push-

button), following the diagram for guidance. Press or slide the switch, and the

onboard red LED will turn on and off.

Note that on the M0/SAMD based CircuitPython boards, at least, you can also have

internal pulldowns with Pull.DOWN and if you want to turn off the pullup/pulldown just

assign switch.pull = None.

Find the pins!

The list below shows each board, explains the location of the Digital pin suggested

for use as input, and the location of the D13 LED.

QT Py M0 does not have a little red LED built in. Therefore, you must connect an

external LED for this example to work. See below for a wiring diagram illustrating

how to connect an external LED to a QT Py M0.

©Adafruit Industries Page 97 of 228

Circuit Playground Express

We're going to use the switch, which is pin

D7, and is located between the battery

connector and the reset switch on the

board. The LED is labeled D13 and is

located next to the USB micro port.

To use D7, comment out the current pin

setup line, and uncomment the line

labeled for Circuit Playground Express.

See the details above!

Trinket M0

D2 is connected to the blue wire, labeled

"2", and located between "3V" and "1" on

the board. The LED is labeled "13" and is

located next to the USB micro port.

Gemma M0

D2 is an alligator-clip-friendly pad labeled

both "D2" and "A1", shown connected to

the blue wire, and is next to the USB micro

port. The LED is located next to the "GND"

label on the board, above the "On/Off"

switch.

Use alligator clips to connect your switch

to your Gemma M0!

©Adafruit Industries Page 98 of 228

https://learn.adafruit.com//assets/51501
https://learn.adafruit.com//assets/51501
https://learn.adafruit.com//assets/51505
https://learn.adafruit.com//assets/51505
https://learn.adafruit.com//assets/51506
https://learn.adafruit.com//assets/51506

QT Py M0

D2 is labeled A2, shown connected to the

blue wire, and is near the USB port

between A1 and A3.

There is no little red LED built-in to the QT

Py M0. Therefore, you must connect an

external LED for this example to work.

To wire up an external LED:

LED + to QT Py SCK

LED - to 470Ω resistor

470Ω resistor to QT Py GND

The button and the LED share the same

GND pin.

To use the external LED, comment out the

current LED setup line, and uncomment

the line labeled for QT Py M0. See the

details above!

Feather M0 Express and Feather M4

Express

D5 is labeled "5" and connected to the

blue wire on the board. The LED is labeled

"#13" and is located next to the USB micro

port.

To use D5, comment out the current pin

setup line, and uncomment the line

labeled for Feather M0 Express. See the

details above!

©Adafruit Industries Page 99 of 228

https://learn.adafruit.com//assets/97805
https://learn.adafruit.com//assets/97805
https://learn.adafruit.com//assets/51502
https://learn.adafruit.com//assets/51502

ItsyBitsy M0 Express and ItsyBitsy M4

Express

D2 is labeled "2", located between the

"MISO" and "EN" labels, and is connected

to the blue wire on the board. The LED is

located next to the reset button between

the "3" and "4" labels on the board.

Metro M0 Express and Metro M4 Express

D2 is located near the top left corner, and

is connected to the blue wire. The LED is

labeled "L" and is located next to the USB

micro port.

Read the Docs

For a more in-depth look at what digitalio can do, check out the DigitalInOut

page in Read the Docs ().

CircuitPython Analog In

This example shows you how you can read the analog voltage on the A1 pin on your

board.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_Analogin/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 100 of 228

https://learn.adafruit.com//assets/51503
https://learn.adafruit.com//assets/51503
https://learn.adafruit.com//assets/51504
https://learn.adafruit.com//assets/51504
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Analog In example"""

import time

import board

from analogio import AnalogIn

analog_in = AnalogIn(board.A1)

def get_voltage(pin):

 return (pin.value * 3.3) / 65536

while True:

 print((get_voltage(analog_in),))

 time.sleep(0.1)

Creating the analog input

analog1in = AnalogIn(board.A1)

Creates an object and connects the object to A1 as an analog input.

get_voltage Helper

get_voltage(pin) is our little helper program. By default, analog readings will

range from 0 (minimum) to 65535 (maximum). This helper will convert the 0-65535

reading from pin.value and convert it a 0-3.3V voltage reading.

Make sure you're running the latest CircuitPython! If you are not, you may run

into an error: "AttributeError: 'module' object has no attribute 'A1'". If you receive

this error, first make sure you're running the latest version of CircuitPython!

©Adafruit Industries Page 101 of 228

Main Loop

The main loop is simple. It prints out the voltage as floating point values by calling

get_voltage on our analog object. Connect to the serial console to see the results.

Changing It Up

By default the pins are floating so the voltages will vary. While connected to the serial

console, try touching a wire from A1 to the GND pin or 3Vo pin to see the voltage

change.

You can also add a potentiometer to control the voltage changes. From the

potentiometer to the board, connect the left pin to ground, the middle pin to A1, and

the right pin to 3V. If you're using Mu editor, you can see the changes as you rotate

the potentiometer on the plotter like in the image above! (Click the Plotter icon at the

top of the window to open the plotter.)

When you turn the knob of the potentiometer, the wiper rotates left and right,

increasing or decreasing the resistance. This, in turn, changes the analog voltage

level that will be read by your board on A1.

©Adafruit Industries Page 102 of 228

Wire it up

The list below shows wiring diagrams to help find the correct pins and wire up the

potentiometer, and provides more information about analog pins on your board!

Circuit Playground Express

A1 is located on the right side of the board.

There are multiple ground and 3V pads

(pins).

Your board has 7 analog pins that can be

used for this purpose. For the full list, see

the pinout page () on the main guide.

Trinket M0

A1 is labeled as 2! It's located between "1~"

and "3V" on the same side of the board as

the little red LED. Ground is located on the

opposite side of the board. 3V is located

next to 2, on the same end of the board as

the reset button.

You have 5 analog pins you can use. For

the full list, see the pinouts page () on the

main guide.

©Adafruit Industries Page 103 of 228

https://learn.adafruit.com//assets/51607
https://learn.adafruit.com//assets/51607
file:///home/adafruit-circuit-playground-express/pinouts
https://learn.adafruit.com//assets/51618
https://learn.adafruit.com//assets/51618
file:///home/adafruit-trinket-m0-circuitpython-arduino/pinouts

Gemma M0

A1 is located near the top of the board of

the board to the left side of the USB Micro

port. Ground is on the other side of the

USB port from A1. 3V is located to the left

side of the battery connector on the

bottom of the board.

Your board has 3 analog pins. For the full

list, see the pinout page () on the main

guide.

QT Py M0

A1, shown connected to the blue wire, is

near the USB port between A0 and A2.

Ground is on the opposite side of the QT

Py, near the USB port, between 3V and 5V.

3V is the next pin, between GND and MO.

Your board has 10 analog pins. For the full

list, see the pinouts page () in the main

guide.

©Adafruit Industries Page 104 of 228

https://learn.adafruit.com//assets/51611
https://learn.adafruit.com//assets/51611
file:///home/adafruit-gemma-m0/pinouts
https://learn.adafruit.com//assets/97844
https://learn.adafruit.com//assets/97844
https://learn.adafruit.com/adafruit-qt-py/pinouts

Feather M0 Express and Feather M4

Express

A1 is located along the edge opposite the

battery connector. There are multiple

ground pins. 3V is located along the same

edge as A1, and is next to the reset button.

Your board has 6 analog pins you can use.

For the full list, see the pinouts page () on

the main guide.

ItsyBitsy M0 Express and ItsyBitsy M4

Express

A1 is located in the middle of the board,

near the "A" in "Adafruit". Ground is labled

"G" and is located next to "BAT", near the

USB Micro port. 3V is found on the

opposite side of the USB port from

Ground, next to RST.

You have 6 analog pins you can use. For a

full list, see the pinouts page () on the main

guide.

©Adafruit Industries Page 105 of 228

https://learn.adafruit.com//assets/51616
https://learn.adafruit.com//assets/51616
file:///home/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/adafruit2-pinouts
https://learn.adafruit.com//assets/51619
https://learn.adafruit.com//assets/51619
https://learn.adafruit.com/introducing-itsy-bitsy-m0/pinouts

Metro M0 Express and Metro M4 Express

A1 is located on the same side of the

board as the barrel jack. There are

multiple ground pins available. 3V is

labeled "3.3" and is located in the center

of the board on the same side as the

barrel jack (and as A1).

Your Metro M0 Express board has 6

analog pins you can use. For the full list,

see the pinouts page () on the main guide.

Your Metro M4 Express board has 6

analog pins you can use. For the full list,

see the pinouts page () on the main guide.

Reading Analog Pin Values

The get_voltage() helper used in the potentiometer example above reads the raw

analog pin value and converts it to a voltage level. You can, however, directly read an

analog pin value in your code by using pin.value . For example, to simply read the

raw analog pin value from the potentiometer, you would run the following code:

import time

import board

from analogio import AnalogIn

analog_in = AnalogIn(board.A1)

while True:

 print(analog_in.value)

 time.sleep(0.1)

This works with any analog pin or input. Use the <pin_name>.value to read the raw

value and utilise it in your code.

©Adafruit Industries Page 106 of 228

https://learn.adafruit.com//assets/52733
https://learn.adafruit.com//assets/52733
file:///home/adafruit-metro-m0-express-designed-for-circuitpython/pinouts
file:///home/adafruit-metro-m4-express-featuring-atsamd51/pinouts

CircuitPython Analog Out

This example shows you how you can set the DAC (true analog output) on pin A0.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_AnalogOut/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Analog Out example"""

import board

from analogio import AnalogOut

analog_out = AnalogOut(board.A0)

while True:

 # Count up from 0 to 65535, with 64 increment

 # which ends up corresponding to the DAC's 10-bit range

 for i in range(0, 65535, 64):

 analog_out.value = i

Creating an analog output

analog_out = AnalogOut(A0)

Creates an object analog_out and connects the object to A0, the only DAC pin

available on both the M0 and the M4 boards. (The M4 has two, A0 and A1.)

A0 is the only true analog output on the M0 boards. No other pins do true analog

output!

©Adafruit Industries Page 107 of 228

Setting the analog output

The DAC on the SAMD21 is a 10-bit output, from 0-3.3V. So in theory you will have a

resolution of 0.0032 Volts per bit. To allow CircuitPython to be general-purpose

enough that it can be used with chips with anything from 8 to 16-bit DACs, the DAC

takes a 16-bit value and divides it down internally.

For example, writing 0 will be the same as setting it to 0 - 0 Volts out.

Writing 5000 is the same as setting it to 5000 / 64 = 78, and 78 / 1024 * 3.3V = 0.25V

output.

Writing 65535 is the same as 1023 which is the top range and you'll get 3.3V output

Main Loop

The main loop is fairly simple, it goes through the entire range of the DAC, from 0 to

65535, but increments 64 at a time so it ends up clicking up one bit for each of the

10-bits of range available.

CircuitPython is not terribly fast, so at the fastest update loop you'll get 4 Hz. The DAC

isn't good for audio outputs as-is.

Express boards like the Circuit Playground Express, Metro M0 Express, ItsyBitsy M0

Express, ItsyBitsy M4 Express, Metro M4 Express, Feather M4 Express, or Feather M0

Express have more code space and can perform audio playback capabilities via the

DAC. QT Py M0, Gemma M0 and Trinket M0 cannot!

Check out the Audio Out section of this guide () for examples!

©Adafruit Industries Page 108 of 228

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out

Find the pin

Use the diagrams below to find the A0 pin marked with a magenta arrow!

Circuit Playground Express

A0 is located between VOUT and A1 near

the battery port.

Trinket M0

A0 is labeled "1~" on Trinket! A0 is located

between "0" and "2" towards the middle of

the board on the same side as the red

LED.

Gemma M0

A0 is located in the middle of the right

side of the board next to the On/Off

switch.

©Adafruit Industries Page 109 of 228

https://learn.adafruit.com//assets/51696
https://learn.adafruit.com//assets/51696
https://learn.adafruit.com//assets/51697
https://learn.adafruit.com//assets/51697
https://learn.adafruit.com//assets/51698
https://learn.adafruit.com//assets/51698

QT Py M0

A0 is located next to the USB port, by the

"QT" label on the board silk.

Feather M0 Express

A0 is located between GND and A1 on the

opposite side of the board from the

battery connector, towards the end with

the Reset button.

Feather M4 Express

A0 is located between GND and A1 on the

opposite side of the board from the

battery connector, towards the end with

the Reset button, and the pin pad has left

and right white parenthesis markings

around it

©Adafruit Industries Page 110 of 228

https://learn.adafruit.com//assets/97800
https://learn.adafruit.com//assets/97800
https://learn.adafruit.com//assets/51699
https://learn.adafruit.com//assets/51699
https://learn.adafruit.com//assets/57531
https://learn.adafruit.com//assets/57531

ItsyBitsy M0 Express

A0 is located between VHI and A1, near

the "A" in "Adafruit", and the pin pad has

left and right white parenthesis markings

around it.

ItsyBitsy M4 Express

A0 is located between VHI and A1, and the

pin pad has left and right white

parenthesis markings around it.

Metro M0 Express

A0 is between VIN and A1, and is located

along the same side of the board as the

barrel jack adapter towards the middle of

the headers found on that side of the

board.

©Adafruit Industries Page 111 of 228

https://learn.adafruit.com//assets/51700
https://learn.adafruit.com//assets/51700
https://learn.adafruit.com//assets/57532
https://learn.adafruit.com//assets/57532
https://learn.adafruit.com//assets/51701
https://learn.adafruit.com//assets/51701

Metro M4 Express

A0 is between VIN and A1, and is located

along the same side of the board as the

barrel jack adapter towards the middle of

the headers found on that side of the

board.

On the Metro M4 Express, there are TWO

true analog outputs: A0 and A1.

CircuitPython Audio Out

CircuitPython comes with audioio , which provides built-in audio output support. You

can play generated tones. You can also play, pause and resume wave files. You can

have 3V-peak-to-peak analog output or I2S digital output. In this page we will show

using analog output.

This is great for all kinds of projects that require sound, like a tone piano or anything

where you'd like to add audio effects!

The first example will show you how to generate a tone and play it using a button.

The second example will show you how to play, pause, and resume a wave file using

a button to resume. Both will play the audio through an audio jack. The default

volume on both of these examples is painfully high through headphones. So, we've

added a potentiometer and included some code in the tone generation example to

control volume.

In our code, we'll use pin A0 for our audio output, as this is the only DAC pin available

on every Express board. The M0 Express boards have audio output on A0. The M4

Express boards have two audio output pins, A0 and A1, however we'll be using only

A0 in this guide.

QT Py M0, Hallowing M0, Trinket M0 and Gemma M0 do not support audioio! You

must use an M0 Express, M4 Express, nRF52840 etc board for this.

©Adafruit Industries Page 112 of 228

https://learn.adafruit.com//assets/53100
https://learn.adafruit.com//assets/53100

Play a Tone

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_Audio_Out_Tone/ and

then click on the directory that matches the version of CircuitPython you're using and

copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Audio Out tone example"""

import time

import array

import math

import board

import digitalio

from audiocore import RawSample

try:

 from audioio import AudioOut

except ImportError:

 try:

 from audiopwmio import PWMAudioOut as AudioOut

 except ImportError:

 pass # not always supported by every board!

button = digitalio.DigitalInOut(board.A1)

button.switch_to_input(pull=digitalio.Pull.UP)

tone_volume = 0.1 # Increase this to increase the volume of the tone.

frequency = 440 # Set this to the Hz of the tone you want to generate.

length = 8000 // frequency

sine_wave = array.array("H", [0] * length)

for i in range(length):

 sine_wave[i] = int((1 + math.sin(math.pi * 2 * i / length)) * tone_volume * (2

** 15 - 1))

audio = AudioOut(board.A0)

sine_wave_sample = RawSample(sine_wave)

while True:

 if not button.value:

 audio.play(sine_wave_sample, loop=True)

 time.sleep(1)

 audio.stop()

©Adafruit Industries Page 113 of 228

First we create the button object, assign it to pin A1 , and set it as an input with a pull-

up. Even though the button switch involves digitalio , we're using an A-pin so that

the same setup code will work across all the boards.

Since the default volume was incredibly high, we included a tone_volume variable in

the sine wave code. You can use the code to control the volume by increasing or

decreasing this number to increase or decrease the volume. You can also control

volume with the potentiometer by rotating the knob.

To set the frequency of the generated tone, change the number assigned to the freq

uency variable to the Hz of the tone you'd like to generate.

Then, we generate one period of a sine wave with the math.sin function, and

assign it to sine_wave .

Next, we create the audio object, and assign it to pin A0 .

We create a sample of the sine wave by using RawSample and providing the

sine_wave we created.

Inside our loop, we check to see if the button is pressed. The button has two states T

rue and False . The button.value defaults to the True state when not pressed.

So, to check if it has been pressed, we're looking for the False state. So, we check

to see if not button.value which is the equivalent of not True , or False .

Once the button is pressed, we play the sample we created and we loop it. The tim

e.sleep(1) tells it to loop (play) for 1 second. Then we stop it after 1 second is up.

You can increase or decrease the length of time it plays by increasing or decreasing

the number of seconds provided to time.sleep() . Try changing it from 1 to 0.5 .

Now try changing it to 2 . You can change it to whatever works for you!

That's it!

Play a Wave File

You can use any supported wave file you like. CircuitPython supports mono or stereo,

at 22 KHz sample rate (or less) and 16-bit WAV format. The M0 boards support ONLY

MONO. The reason for mono is that there's only one analog output on those boards!

The M4 boards support stereo as they have two outputs. The 22 KHz or less because

the circuitpython can't handle more data than that (and also it will not sound much

better) and the DAC output is 10-bit so anything over 16-bit will just take up room

without better quality.

©Adafruit Industries Page 114 of 228

Since the WAV file must fit on the CircuitPython file system, it must be under 2 MB.

We have a detailed guide on how to generate WAV files here ().

We've included the one we used here. Download it and copy it to your board.

StreetChicken.wav

We're going to play the wave file for 6 seconds, pause it, wait for a button to be

pressed, and then resume the file to play through to the end. Then it loops back to

the beginning and starts again! Let's take a look.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_Audio_Out_Wave/ and

then click on the directory that matches the version of CircuitPython you're using and

copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Audio Out WAV example"""

import time

import board

import digitalio

from audiocore import WaveFile

try:

 from audioio import AudioOut

except ImportError:

 try:

 from audiopwmio import PWMAudioOut as AudioOut

 except ImportError:

 pass # not always supported by every board!

button = digitalio.DigitalInOut(board.A1)

button.switch_to_input(pull=digitalio.Pull.UP)

CircuitPython does not support OGG. Just WAV and MP3!

©Adafruit Industries Page 115 of 228

https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino/convert-files
https://cdn-learn.adafruit.com/assets/assets/000/057/463/original/StreetChicken.wav?1531255658

wave_file = open("StreetChicken.wav", "rb")

wave = WaveFile(wave_file)

audio = AudioOut(board.A0)

while True:

 audio.play(wave)

 # This allows you to do other things while the audio plays!

 t = time.monotonic()

 while time.monotonic() - t < 6:

 pass

 audio.pause()

 print("Waiting for button press to continue!")

 while button.value:

 pass

 audio.resume()

 while audio.playing:

 pass

 print("Done!")

First we create the button object, assign it to pin A1 , and set it as an input with a pull-

up.

Next we then open the file, "StreetChicken.wav" as a readable binary and store

the file object in wave_file which is what we use to actually read audio from: wave_

file = open("StreetChicken.wav", "rb") .

Now we will ask the audio playback system to load the wave data from the file wave

= audiocore.WaveFile(wave_file) and finally request that the audio is played

through the A0 analog output pin audio = audioio.AudioOut(board.A0) .

The audio file is now ready to go, and can be played at any time with audio.play(wa

ve) !

Inside our loop, we start by playing the file.

Next we have the block that tells the code to wait 6 seconds before pausing the file.

We chose to go with using time.monotonic() because it's non-blocking which

means you can do other things while the file is playing, like control servos or

NeoPixels! At any given point in time, time.monotonic() is equal to the number

seconds since your board was last power-cycled. (The soft-reboot that occurs with the

auto-reload when you save changes to your CircuitPython code, or enter and exit the

REPL, does not start it over.) When it is called, it returns a number with a decimal.

When you assign time.monotonic() to a variable, that variable is equal to the

number of seconds that time.monotonic() was equal to at the moment the variable

was assigned. You can then call it again and subtract the variable from

time.monotonic() to get the amount of time that has passed. For more details,

check out this example ().

©Adafruit Industries Page 116 of 228

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#time-dot-monotonic-example

So, we assign t = time.monotonic() to get a starting point. Then we say pass , or

"do nothing" until the difference between t and time.monotonic() is greater than

6 seconds. In other words, continue playing until 6 seconds passes. Remember, you

can add in other code here to do other things while you're playing audio for 6

seconds.

Then we pause the audio and print to the serial console, "Waiting for button

press to continue!"

Now we're going to wait for a button press in the same way we did for playing the

generated tone. We're saying while button.value , or while the button is returning

True , pass . Once the button is pressed, it returns False , and this tells the code to

continue.

Once the button is pressed, we resume playing the file. We tell it to finish playing

saying while audio.playing: pass .

Finally, we print to the serial console, "Done!"

You can do this with any supported wave file, and you can include all kinds of things

in your project while the file is playing. Give it a try!

Wire It Up

Along with your microcontroller board, we're going to be using:

Breadboard-Friendly 3.5mm Stereo

Headphone Jack

Pipe audio in or out of your project with

this very handy breadboard-friendly audio

jack. It's a stereo jack with disconnect-

switches on Left and Right channels as

well as a center...

https://www.adafruit.com/product/1699

©Adafruit Industries Page 117 of 228

https://www.adafruit.com/product/1699
https://www.adafruit.com/product/1699
https://www.adafruit.com/product/1699

Tactile Switch Buttons (12mm square,

6mm tall) x 10 pack

Medium-sized clicky momentary switches

are standard input "buttons" on electronic

projects. These work best in a PCB but

https://www.adafruit.com/product/1119

Panel Mount 10K potentiometer

(Breadboard Friendly)

This potentiometer is a two-in-one, good

in a breadboard or with a panel. It's a

fairly standard linear taper 10K ohm

potentiometer, with a grippy shaft. It's

smooth and easy...

https://www.adafruit.com/product/562

100uF 16V Electrolytic Capacitors - Pack

of 10

We like capacitors so much we made

a kids' show about them. ...

https://www.adafruit.com/product/2193

Full Sized Premium Breadboard - 830 Tie

Points

This is a 'full-size' premium quality

breadboard, 830 tie points. Good for

small and medium projects. It's 2.2" x 7"

(5.5 cm x 17 cm) with a standard double-

strip...

https://www.adafruit.com/product/239

©Adafruit Industries Page 118 of 228

https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/562
https://www.adafruit.com/product/562
https://www.adafruit.com/product/562
https://www.adafruit.com/product/2193
https://www.adafruit.com/product/2193
https://www.adafruit.com/product/2193
https://www.adafruit.com/product/239
https://www.adafruit.com/product/239
https://www.adafruit.com/product/239

Premium Male/Male Jumper Wires - 20 x

6" (150mm)

These Male/Male Jumper Wires are handy

for making wire harnesses or jumpering

between headers on PCB's. These

premium jumper wires are 6" (150mm)

long and come in a...

https://www.adafruit.com/product/1957

And to make it easier to wire up the Circuit Playground Express:

Small Alligator Clip to Male Jumper Wire

Bundle - 6 Pieces

When working with unusual non-header-

friendly surfaces, these handy cables will

be your best friends! No longer will you

have long, cumbersome strands of

alligator clips. These...

https://www.adafruit.com/product/3448

Button switches with four pins are really two pairs of pins. When wiring up a button

switch with four pins, the easiest way to verify that you're wiring up the correct pins is

to wire up opposite corners of the button switch. Then there's no chance that you'll

accidentally wire up the same pin twice.

Here are the steps you're going to follow to wire up these components:

Connect the ground pin on your board to a ground rail on the breadboard

because you'll be connecting all three components to ground.

Connect one pin on the button switch to pin A1 on your board, and the opposite

pin on the button switch to the ground rail on the breadboard.

Connect the left and right pin on the audio jack to each other.

Connect the center pin on the audio jack to the ground rail on the breadboard.

Connect the left pin to the negative side of a 100mF capacitor.

Connect the positive side of the capacitor to the center pin on the

potentiometer.

Connect the right pin on the potentiometer to pin A0 on your board.

Connect the left pin of the potentiometer to the ground rail on the breadboard.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 119 of 228

https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448

The list below shows wiring diagrams to help with finding the correct pins and wiring

up the different components. The ground wires are black. The wire for the button

switch is yellow. The wires involved with audio are blue.

Wiring is the same for the M4 versions of

the boards as it is for the M0 versions.

Follow the same image for both.

Use a breadboard to make your wiring

neat and tidy!

©Adafruit Industries Page 120 of 228

https://learn.adafruit.com//assets/57479
https://learn.adafruit.com//assets/57479
https://learn.adafruit.com//assets/57576
https://learn.adafruit.com//assets/57576
https://learn.adafruit.com//assets/57577
https://learn.adafruit.com//assets/57577

Circuit Playground Express is wired

electrically the same as the ItsyBitsy/

Feather/Metro above but we use alligator

clip to jumper wires instead of plain

jumpers

CircuitPython PWM

Your board has pwmio support, which means you can PWM LEDs, control servos,

beep piezos, and manage "pulse train" type devices like DHT22 and Infrared.

Nearly every pin has PWM support! For example, all ATSAMD21 board have an A0 pin

which is 'true' analog out and does not have PWM support.

PWM with Fixed Frequency

This example will show you how to use PWM to fade the little red LED on your board.

The following illustrates how to connect an external LED to a QT Py M0.

LED + to QT Py SCK

LED - to 470Ω resistor

470Ω resistor to QT Py GND

The QT Py M0 does not have a little red LED. Therefore, you must connect an

external LED and edit this example for it to work. Follow the wiring diagram and

steps below to run this example on QT Py M0.

©Adafruit Industries Page 121 of 228

https://learn.adafruit.com//assets/57486
https://learn.adafruit.com//assets/57486
https://learn.adafruit.com//assets/97845
https://learn.adafruit.com//assets/97845

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_PWM/ and then click

on the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials: PWM with Fixed Frequency example."""

import time

import board

import pwmio

LED setup for most CircuitPython boards:

led = pwmio.PWMOut(board.LED, frequency=5000, duty_cycle=0)

LED setup for QT Py M0:

led = pwmio.PWMOut(board.SCK, frequency=5000, duty_cycle=0)

while True:

 for i in range(100):

 # PWM LED up and down

 if i < 50:

 led.duty_cycle = int(i * 2 * 65535 / 100) # Up

 else:

 led.duty_cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down

 time.sleep(0.01)

To use with QT Py M0, you must comment out led = pwmio.PWMOut(board.LED,

frequency=5000, duty_cycle=0) and uncomment led =

pwmio.PWMOut(board.SCK, frequency=5000, duty_cycle=0) . Your setup lines

should look like this for the example to work with QT Py M0:

LED setup for most CircuitPython boards:

led = pwmio.PWMOut(board.LED, frequency=5000, duty_cycle=0)

LED setup for QT Py M0:

led = pwmio.PWMOut(board.SCK, frequency=5000, duty_cycle=0)

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 122 of 228

Create a PWM Output

led = pwmio.PWMOut(board.LED, frequency=5000, duty_cycle=0)

Since we're using the onboard LED, we'll call the object led , use pwmio.PWMOut to

create the output and pass in the D13 LED pin to use.

Main Loop

The main loop uses range() to cycle through the loop. When the range is below 50,

it PWMs the LED brightness up, and when the range is above 50, it PWMs the

brightness down. This is how it fades the LED brighter and dimmer!

The time.sleep() is needed to allow the PWM process to occur over a period of

time. Otherwise it happens too quickly for you to see!

PWM Output with Variable Frequency

Fixed frequency outputs are great for pulsing LEDs or controlling servos. But if you

want to make some beeps with a piezo, you'll need to vary the frequency.

The following example uses pwmio to make a series of tones on a piezo.

To use with any of the M0 boards, no changes to the following code are needed.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_PWM_Piezo/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 123 of 228

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express,

you must comment out the piezo = pwmio.PWMOut(board.A2, duty_cycle=0,

frequency=440, variable_frequency=True) line and uncomment the piezo =

pwmio.PWMOut(board.A1, duty_cycle=0, frequency=440,

variable_frequency=True) line. A2 is not a supported PWM pin on the M4 boards!

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials PWM with variable frequency piezo example"""

import time

import board

import pwmio

For the M0 boards:

piezo = pwmio.PWMOut(board.A2, duty_cycle=0, frequency=440, variable_frequency=True)

For the M4 boards:

piezo = pwmio.PWMOut(board.A1, duty_cycle=0, frequency=440,

variable_frequency=True)

while True:

 for f in (262, 294, 330, 349, 392, 440, 494, 523):

 piezo.frequency = f

 piezo.duty_cycle = 65535 // 2 # On 50%

 time.sleep(0.25) # On for 1/4 second

 piezo.duty_cycle = 0 # Off

 time.sleep(0.05) # Pause between notes

 time.sleep(0.5)

The following example uses a nice little helper in the simpleio library that makes a

tone for you on a piezo with a single command.

To use with any of the M0 boards, no changes to the following code are needed.

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express,

you must comment out the simpleio.tone(board.A2, f, 0.25) line and

uncomment the simpleio.tone(board.A1, f, 0.25) line. A2 is not a supported

PWM pin on the M4 boards!

©Adafruit Industries Page 124 of 228

Installing Project Code

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_PWM_Piezo_simpleio/ and then click on the directory that

matches the version of CircuitPython you're using and copy the contents of that

directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials PWM piezo simpleio example"""

import time

import board

import simpleio

while True:

 for f in (262, 294, 330, 349, 392, 440, 494, 523):

 # For the M0 boards:

 simpleio.tone(board.A2, f, 0.25) # on for 1/4 second

 # For the M4 boards:

 # simpleio.tone(board.A1, f, 0.25) # on for 1/4 second

 time.sleep(0.05) # pause between notes

 time.sleep(0.5)

As you can see, it's much simpler!

Wire it up

Use the diagrams below to help you wire up your piezo. Attach one leg of the piezo

to pin A2 on the M0 boards or A1 on the M4 boards, and the other leg to ground. It

doesn't matter which leg is connected to which pin. They're interchangeable!

©Adafruit Industries Page 125 of 228

Circuit Playground Express

Use alligator clips to attach A2 and any

one of the GND to different legs of the

piezo.

CPX has PWM on the following pins: A1,

A2, A3, A6, RX, LIGHT, A8, TEMPERATURE,

A9, BUTTON_B, D5, SLIDE_SWITCH, D7,

D13, REMOTEIN, IR_RX, REMOTEOUT,

IR_TX, IR_PROXIMITY,

MICROPHONE_CLOCK,

MICROPHONE_DATA,

ACCELEROMETER_INTERRUPT,

ACCELEROMETER_SDA,

ACCELEROMETER_SCL,

SPEAKER_ENABLE.

There is NO PWM on: A0, SPEAKER, A4,

SCL, A5, SDA, A7, TX, BUTTON_A, D4,

NEOPIXEL, D8, SCK, MOSI, MISO,

FLASH_CS.

©Adafruit Industries Page 126 of 228

https://learn.adafruit.com//assets/51861
https://learn.adafruit.com//assets/51861

Trinket M0

Note: A2 on Trinket is also labeled Digital

"0"!

Use jumper wires to connect GND and

D0 to different legs of the piezo.

Trinket has PWM available on the following

pins: D0, A2, SDA, D2, A1, SCL, MISO, D4,

A4, TX, MOSI, D3, A3, RX, SCK, D13,

APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, D1.

Gemma M0

Use alligator clips to attach A2 and GND to

different legs on the piezo.

Gemma has PWM available on the

following pins: A1, D2, RX, SCL, A2, D0,

TX, SDA, L, D13, APA102_MOSI,

APA102_SCK.

There is NO PWM on: A0, D1.

©Adafruit Industries Page 127 of 228

https://learn.adafruit.com//assets/51864
https://learn.adafruit.com//assets/51864
https://learn.adafruit.com//assets/51866
https://learn.adafruit.com//assets/51866

QT Py M0

Use jumper wires to attach A2 and GND to

different legs of the piezo.

The QT Py M0 has PWM on the following

pins: A2, A3, A6, A7, A8, A9, A10, D2, D3,

D4, D5, D6, D7, D8, D9, D10, SCK, MISO,

MOSI, NEOPIXEL, RX, TX, SCL, SDA.

There is NO A0, A1, D0, D1,

NEOPIXEL_POWER.

Feather M0 Express

Use jumper wires to attach A2 and one of

the two GND to different legs of the piezo.

Feather M0 Express has PWM on the

following pins: A2, A3, A4, SCK, MOSI,

MISO, D0, RX, D1, TX, SDA, SCL, D5, D6,

D9, D10, D11, D12, D13, NEOPIXEL.

There is NO PWM on: A0, A1, A5.

©Adafruit Industries Page 128 of 228

https://learn.adafruit.com//assets/97846
https://learn.adafruit.com//assets/97846
https://learn.adafruit.com//assets/51868
https://learn.adafruit.com//assets/51868

Feather M4 Express

Use jumper wires to attach A1 and one of

the two GND to different legs of the piezo.

To use A1, comment out the current pin

setup line, and uncomment the line

labeled for the M4 boards. See the details

above!

Feather M4 Express has PWM on the

following pins: A1, A3, SCK, D0, RX, D1, TX,

SDA, SCL, D4, D5, D6, D9, D10, D11, D12,

D13.

There is NO PWM on: A0, A2, A4, A5,

MOSI, MISO.

ItsyBitsy M0 Express

Use jumper wires to attach A2 and G to

different legs of the piezo.

ItsyBitsy M0 Express has PWM on the

following pins: D0, RX, D1, TX, D2, D3, D4,

D5, D6, D7, D8, D9, D10, D11, D12, D13, L,

A2, A3, A4, MOSI, MISO, SCK, SCL, SDA,

APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, A1, A5.

©Adafruit Industries Page 129 of 228

https://learn.adafruit.com//assets/57590
https://learn.adafruit.com//assets/57590
https://learn.adafruit.com//assets/51870
https://learn.adafruit.com//assets/51870

ItsyBitsy M4 Express

Use jumper wires to attach A1 and G to

different legs of the piezo.

To use A1, comment out the current pin

setup line, and uncomment the line

labeled for the M4 boards. See the details

above!

ItsyBitsy M4 Express has PWM on the

following pins: A1, D0, RX, D1, TX, D2, D4,

D5, D7, D9, D10, D11, D12, D13, SDA, SCL.

There is NO PWM on: A2, A3, A4, A5, D3,

SCK, MOSI, MISO.

Metro M0 Express

Use jumper wires to connect A2 and any

one of the GND to different legs on the

piezo.

Metro M0 Express has PWM on the

following pins: A2, A3, A4, D0, RX, D1, TX,

D2, D3, D4, D5, D6, D7, D8, D9, D10, D11,

D12, D13, SDA, SCL, NEOPIXEL, SCK,

MOSI, MISO.

There is NO PWM on: A0, A1, A5,

FLASH_CS.

©Adafruit Industries Page 130 of 228

https://learn.adafruit.com//assets/57591
https://learn.adafruit.com//assets/57591
https://learn.adafruit.com//assets/51871
https://learn.adafruit.com//assets/51871

Metro M4 Express

Use jumper wires to connect A1 and any

one of the GND to different legs on the

piezo.

To use A1, comment out the current pin

setup line, and uncomment the line

labeled for the M4 boards. See the details

above!

Metro M4 Express has PWM on: A1, A5,

D0, RX, D1, TX, D2, D3, D4, D5, D6, D7, D8,

D9, D10, D11, D12, D13, SDA, SCK, MOSI,

MISO

There is No PWM on: A0, A2, A3, A4, SCL,

AREF, NEOPIXEL, LED_RX, LED_TX.

Where's My PWM?

Want to check to see which pins have PWM yourself? We've written this handy script!

It attempts to setup PWM on every pin available, and lets you know which ones work

and which ones don't. Check it out!

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/PWM_Test_Script/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 131 of 228

https://learn.adafruit.com//assets/53102
https://learn.adafruit.com//assets/53102

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials PWM pin identifying script"""

import board

import pwmio

for pin_name in dir(board):

 pin = getattr(board, pin_name)

 try:

 p = pwmio.PWMOut(pin)

 p.deinit()

 print("PWM on:", pin_name) # Prints the valid, PWM-capable pins!

 except ValueError: # This is the error returned when the pin is invalid.

 print("No PWM on:", pin_name) # Prints the invalid pins.

 except RuntimeError: # Timer conflict error.

 print("Timers in use:", pin_name) # Prints the timer conflict pins.

 except TypeError: # Error returned when checking a non-pin object in

dir(board).

 pass # Passes over non-pin objects in dir(board).

CircuitPython Servo

In order to use servos, we take advantage of pwmio . Now, in theory, you could just

use the raw pwmio calls to set the frequency to 50 Hz and then set the pulse widths.

But we would rather make it a little more elegant and easy!

So, instead we will use adafruit_motor which manages servos for you quite nicely!

adafruit_motor is a library so be sure to grab it from the library bundle if you have

not yet ()! If you need help installing the library, check out the CircuitPython Libraries

page ().

Servos come in two types:

A standard hobby servo - the horn moves 180 degrees (90 degrees in each

direction from zero degrees).

A continuous servo - the horn moves in full rotation like a DC motor. Instead of

an angle specified, you set a throttle value with 1.0 being full forward, 0.5 being

half forward, 0 being stopped, and -1 being full reverse, with other values

between.

•

•

©Adafruit Industries Page 132 of 228

https://circuitpython.org/libraries
https://circuitpython.org/libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries

Servo Wiring

The connections for a servo are the same for standard servos and continuous rotation

servos.

Connect the servo's brown or black ground wire to ground on the CircuitPython

board.

Connect the servo's red power wire to 5V power. USB power can in some cases good

for a servo or two. But some USB ports supply limited current, and operating a servo

from the USB 5V line may cause a power brownout and board crash.

For more servos, you'll need an external battery pack or external power supply. Do

not use 3.3V for powering a servo!

Connect the servo's yellow or white signal wire to the control/data pin, in this case A1

or A2 but you can use any PWM-capable pin.

For example, to wire a servo to Trinket,

connect the ground wire to GND, the

power wire to USB, and the signal wire to

0.

Remember, A2 on Trinket is labeled "0".

Servos will only work on PWM-capable pins! Check your board details to verify

which pins have PWM outputs.

©Adafruit Industries Page 133 of 228

https://learn.adafruit.com//assets/51927
https://learn.adafruit.com//assets/51927

For Gemma, use jumper wire alligator clips

to connect the ground wire to GND, the

power wire to VOUT, and the signal wire

to A2.

For Circuit Playground Express and Circuit

Playground Bluefruit, use jumper wire

alligator clips to connect the ground wire

to GND, the power wire to VOUT, and the

signal wire to A2.

For QT Py M0, connect the ground wire to

GND, the power wire to 5V, and the signal

wire to A2.

©Adafruit Industries Page 134 of 228

https://learn.adafruit.com//assets/51928
https://learn.adafruit.com//assets/51928
https://learn.adafruit.com//assets/51991
https://learn.adafruit.com//assets/51991
https://learn.adafruit.com//assets/97847
https://learn.adafruit.com//assets/97847

For boards like Feather M0 Express,

ItsyBitsy M0 Express and Metro M0

Express, connect the ground wire to any

GND, the power wire to USB or 5V, and

the signal wire to A2.

For the Metro M4 Express, ItsyBitsy M4

Express and the Feather M4 Express,

connect the ground wire to any G or GND,

the power wire to USB or 5V, and the

signal wire to A2.

Standard Servo Code

Here's an example that will sweep a servo connected to pin A2 from 0 degrees to 180

degrees (-90 to 90 degrees) and back.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_Servo/ and then click on the directory that matches the version of

CircuitPython you're using and copy the contents of that directory to your CIRCUITPY

drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 135 of 228

https://learn.adafruit.com//assets/51929
https://learn.adafruit.com//assets/51929
https://learn.adafruit.com//assets/104844
https://learn.adafruit.com//assets/104844

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Servo standard servo example"""

import time

import board

import pwmio

from adafruit_motor import servo

create a PWMOut object on Pin A2.

pwm = pwmio.PWMOut(board.A2, duty_cycle=2 ** 15, frequency=50)

Create a servo object, my_servo.

my_servo = servo.Servo(pwm)

while True:

 for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.

 my_servo.angle = angle

 time.sleep(0.05)

 for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.

 my_servo.angle = angle

 time.sleep(0.05)

Continuous Servo Code

There are two differences with Continuous Servos vs. Standard Servos:

The servo object is created like my_servo = servo.ContinuousServo(pwm)

instead of my_servo = servo.Servo(pwm)

Instead of using myservo.angle , you use my_servo.throttle using a

throttle value from 1.0 (full on) to 0.0 (stopped) to -1.0 (full reverse). Any number

between would be a partial speed forward (positive) or reverse (negative). This

is very similar to standard DC motor control with the adafruit_motor library.

This example runs full forward for 2 seconds, stops for 2 seconds, runs full reverse for

2 seconds, then stops for 4 seconds.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

1.

2.

©Adafruit Industries Page 136 of 228

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_Continuous_Servo/ and then click on the directory that matches

the version of CircuitPython you're using and copy the contents of that directory to

your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2019 Anne Barela for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Servo continuous rotation servo example"""

import time

import board

import pwmio

from adafruit_motor import servo

create a PWMOut object on Pin A2.

pwm = pwmio.PWMOut(board.A2, frequency=50)

Create a servo object, my_servo.

my_servo = servo.ContinuousServo(pwm)

while True:

 print("forward")

 my_servo.throttle = 1.0

 time.sleep(2.0)

 print("stop")

 my_servo.throttle = 0.0

 time.sleep(2.0)

 print("reverse")

 my_servo.throttle = -1.0

 time.sleep(2.0)

 print("stop")

 my_servo.throttle = 0.0

 time.sleep(4.0)

Pretty simple!

Note that we assume that 0 degrees is 0.5ms and 180 degrees is a pulse width of

2.5ms. That's a bit wider than the official 1-2ms pulse widths. If you have a servo that

has a different range you can initialize the servo object with a different min_pulse

and max_pulse . For example:

my_servo = servo.Servo(pwm, min_pulse = 500, max_pulse = 2500)

©Adafruit Industries Page 137 of 228

For more detailed information on using servos with CircuitPython, check out the Circui

tPython section of the servo guide ()!

CircuitPython Cap Touch

Nearly all CircuitPython boards provide capacitive touch capabilities. This means each

board has at least one pin that works as an input when you touch it! For SAMD21 (M0)

boards, the capacitive touch is done in hardware, so no external resistors, capacitors

or ICs required. On SAMD51 (M4), nRF52840, and some other boards, Adafruit uses a

software solution: you will need to add a 1M (1 megaohm) resistor from the pin to

ground.

On the Circuit Playground Bluefruit (nrf52840) board, the necessary resistors are

already on the board, so you don't need to add them.

This example will show you how to use a capacitive touch pin on your board.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_CapTouch/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Capacitive Touch example"""

import time

import board

import touchio

touch_pad = board.A0 # Will not work for Circuit Playground Express!

touch_pad = board.A1 # For Circuit Playground Express

touch = touchio.TouchIn(touch_pad)

while True:

 if touch.value:

©Adafruit Industries Page 138 of 228

file:///home/using-servos-with-circuitpython/circuitpython
file:///home/using-servos-with-circuitpython/circuitpython

 print("Touched!")

 time.sleep(0.05)

Create the Touch Input

First, we assign the variable touch_pad to a pin. The example uses A0, so we assign

touch_pad = board.A0 . You can choose any touch capable pin from the list below

if you'd like to use a different pin. Then we create the touch object, name it touch

and attach it to touch_pad .

To use with Circuit Playground Express, comment out touch_pad = board.A0 and

uncomment touch_pad = board.A1 .

Main Loop

Next, we create a loop that checks to see if the pin is touched. If it is, it prints to

the serial console. Connect to the serial console to see the printed results when you

touch the pin!

No extra hardware is required, because you can touch the pin directly. However, you

may want to attach alligator clips or copper tape to metallic or conductive objects. Try

metal flatware, fruit or other foods, liquids, aluminum foil, or other items lying around

your desk!

You may need to reload your code or restart your board after changing the attached

item because the capacitive touch code "calibrates" based on what it sees when it

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 139 of 228

first starts up. So if you get too many touch responses or not enough, reload your

code through the serial console or eject the board and tap the reset button!

Find the Pin(s)

Your board may have more touch capable pins beyond A0. We've included a list

below that helps you find A0 (or A1 in the case of CPX) for this example, identified by

the magenta arrow. This list also includes information about any other pins that work

for touch on each board!

To use the other pins, simply change the number in A0 to the pin you want to use. For

example, if you want to use A3 instead, your code would start with touch_pad =

board.A3 .

If you would like to use more than one pin at the same time, your code may look like

the following. If needed, you can modify this code to include pins that work for your

board.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_CapTouch_2Pins/ and

then click on the directory that matches the version of CircuitPython you're using and

copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Capacitive Touch on two pins example. Does not work on

Trinket M0!"""

import time

import board

import touchio

touch_A1 = touchio.TouchIn(board.A1) # Not a touch pin on Trinket M0!

touch_A2 = touchio.TouchIn(board.A2) # Not a touch pin on Trinket M0!

while True:

 if touch_A1.value:

 print("Touched A1!")

©Adafruit Industries Page 140 of 228

 if touch_A2.value:

 print("Touched A2!")

 time.sleep(0.05)

Use the list below to find out what pins you can use with your board. Then, try adding

them to your code and have fun!

Trinket M0

There are three touch capable pins on

Trinket: A0, A3, and A4.

Remember, A0 is labeled "1~" on Trinket

M0!

Gemma M0

There are three pins on Gemma, in the

form of alligator-clip-friendly pads, that

work for touch input: A0, A1 and A2.

This example does NOT work for Trinket M0! You must change the pins to use

with this board. This example only works with Gemma, Circuit Playground

Express, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express.

©Adafruit Industries Page 141 of 228

https://learn.adafruit.com//assets/51773
https://learn.adafruit.com//assets/51773
https://learn.adafruit.com//assets/51774
https://learn.adafruit.com//assets/51774

QT Py M0

There are six pins on QT Py that work for

touch input: A0 - A3, TX, and RX.

Feather M0 Express

There are 6 pins on the Feather that have

touch capability: A0 - A5.

ItsyBitsy M0 Express

There are 6 pins on the ItsyBitsy that have

touch capability: A0 - A5.

©Adafruit Industries Page 142 of 228

https://learn.adafruit.com//assets/97849
https://learn.adafruit.com//assets/97849
https://learn.adafruit.com//assets/51775
https://learn.adafruit.com//assets/51775
https://learn.adafruit.com//assets/51776
https://learn.adafruit.com//assets/51776

Metro M0 Express

There are 6 pins on the Metro that have

touch capability: A0 - A5.

Circuit Playground Express

Circuit Playground Express has seven

touch capable pins! You have A1 - A7

available, in the form of alligator-clip-

friendly pads. See the CPX guide Cap

Touch section () for more information on

using these pads for touch!

Remember: A0 does NOT have touch

capabilities on CPX.

CircuitPython Internal RGB LED

Every board has a built in RGB LED. You can use CircuitPython to control the color

and brightness of this LED. There are two different types of internal RGB LEDs: DotSta

r () and NeoPixel (). This section covers both and explains which boards have which

LED.

©Adafruit Industries Page 143 of 228

https://learn.adafruit.com//assets/51777
https://learn.adafruit.com//assets/51777
https://learn.adafruit.com//assets/51993
https://learn.adafruit.com//assets/51993
file:///home/adafruit-circuit-playground-express/adafruit2-circuitpython-cap-touch
file:///home/adafruit-circuit-playground-express/adafruit2-circuitpython-cap-touch
file:///home/adafruit-dotstar-leds/overview
file:///home/adafruit-dotstar-leds/overview
file:///home/adafruit-neopixel-uberguide/the-magic-of-neopixels

The first example will show you how to change the color and brightness of the

internal RGB LED.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_Internal_RGB_LED_colors/ and then click on the directory that

matches the version of CircuitPython you're using and copy the contents of that

directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Internal RGB LED red, green, blue example"""

import time

import board

if hasattr(board, "APA102_SCK"):

 import adafruit_dotstar

©Adafruit Industries Page 144 of 228

 led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)

else:

 import neopixel

 led = neopixel.NeoPixel(board.NEOPIXEL, 1)

led.brightness = 0.3

while True:

 led[0] = (255, 0, 0)

 time.sleep(0.5)

 led[0] = (0, 255, 0)

 time.sleep(0.5)

 led[0] = (0, 0, 255)

 time.sleep(0.5)

Create the LED

First, we create the LED object and attach it to the correct pin or pins. In the case of a

NeoPixel, there is only one pin necessary, and we have called it NEOPIXEL for easier

use. In the case of a DotStar, however, there are two pins necessary, and so we use

the pin names APA102_MOSI and APA102_SCK to get it set up. Since we're using the

single onboard LED, the last thing we do is tell it that there's only 1 LED!

Trinket M0, Gemma M0, ItsyBitsy M0 Express, and ItsyBitsy M4 Express each have an

onboard Dotstar LED, so no changes are needed to the initial version of the example.

QT Py M0, Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4

Express, and Circuit Playground Express each have an onboard NeoPixel LED, so you

must comment out import adafruit_dotstar and led =

adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1) , and

uncomment import neopixel and led = neopixel.NeoPixel(board.NEOPIXEL,

1) .

Brightness

To set the brightness you simply use the brightness attribute. Brightness is set with

a number between 0 and 1 , representative of a percent from 0% to 100%. So,

led.brightness = (0.3) sets the LED brightness to 30%. The default brightness is

1 or 100%, and at it's maximum, the LED is blindingly bright! You can set it lower if

you choose.

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 145 of 228

Main Loop

LED colors are set using a combination of red, green, and blue, in the form of an (R, G,

B) tuple. Each member of the tuple is set to a number between 0 and 255 that

determines the amount of each color present. Red, green and blue in different

combinations can create all the colors in the rainbow! So, for example, to set the LED

to red, the tuple would be (255, 0, 0), which has the maximum level of red, and no

green or blue. Green would be (0, 255, 0), etc. For the colors between, you set a

combination, such as cyan which is (0, 255, 255), with equal amounts of green and

blue.

The main loop is quite simple. It sets the first LED to red using (255, 0, 0) , then gr

een using (0, 255, 0) , and finally blue using (0, 0, 255) . Next, we give it a tim

e.sleep() so it stays each color for a period of time. We chose time.sleep(0.5) ,

or half a second. Without the time.sleep() it'll flash really quickly and the colors

will be difficult to see!

Note that we set led[0] . This means the first, and in the case of most of the boards,

the only LED. In CircuitPython, counting starts at 0. So the first of any object, list, etc

will be 0 !

Try changing the numbers in the tuples to change your LED to any color of the

rainbow. Or, you can add more lines with different color tuples to add more colors to

the sequence. Always add the time.sleep() , but try changing the amount of time

to create different cycle animations!

©Adafruit Industries Page 146 of 228

Making Rainbows (Because Who Doesn't Love 'Em!)

Coding a rainbow effect involves a little math and a helper function called colorwhee

l . For details about how wheel works, see this explanation here ()!

The last example shows how to do a rainbow animation on the internal RGB LED.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_Internal_RGB_LED_rainbow/ and then click on the directory that

matches the version of CircuitPython you're using and copy the contents of that

directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 147 of 228

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/generate-your-colors#colorwheel-or-wheel-explained-2982566-3

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Internal RGB LED rainbow example"""

import time

import board

from rainbowio import colorwheel

if hasattr(board, "APA102_SCK"):

 import adafruit_dotstar

 led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)

else:

 import neopixel

 led = neopixel.NeoPixel(board.NEOPIXEL, 1)

led.brightness = 0.3

i = 0

while True:

 i = (i + 1) % 256 # run from 0 to 255

 led.fill(colorwheel(i))

 time.sleep(0.01)

We add the colorwheel function in after setup but before our main loop.

And right before our main loop, we assign the variable i = 0 , so it's ready for use

inside the loop.

The main loop contains some math that cycles i from 0 to 255 and around again

repeatedly. We use this value to cycle colorwheel() through the rainbow!

The time.sleep() determines the speed at which the rainbow changes. Try a

higher number for a slower rainbow or a lower number for a faster one!

Circuit Playground Express Rainbow

Note that here we use led.fill instead of led[0] . This means it turns on all the

LEDs, which in the current code is only one. So why bother with fill ? Well, you may

have a Circuit Playground Express, which as you can see has TEN NeoPixel LEDs built

©Adafruit Industries Page 148 of 228

in. The examples so far have only turned on the first one. If you'd like to do a rainbow

on all ten LEDs, change the 1 in:

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

to 10 so it reads:

led = neopixel.NeoPixel(board.NEOPIXEL, 10) .

This tells the code to look for 10 LEDs instead of only 1. Now save the code and watch

the rainbow go! You can make the same 1 to 10 change to the previous examples

as well, and use led.fill to light up all the LEDs in the colors you chose! For more

details, check out the NeoPixel section of the CPX guide ()!

CircuitPython NeoPixel

NeoPixels are a revolutionary and ultra-popular way to add lights and color to your

project. These stranded RGB lights have the controller inside the LED, so you just

push the RGB data and the LEDs do all the work for you. They're a perfect match for

CircuitPython!

You can drive 300 NeoPixel LEDs with brightness control (set brightness=1.0 in

object creation) and 1000 LEDs without. That's because to adjust the brightness we

have to dynamically recreate the data-stream each write.

©Adafruit Industries Page 149 of 228

file:///home/adafruit-circuit-playground-express/circuitpython-neopixel

Wiring It Up

You'll need to solder up your NeoPixels first. Verify your connection is on the DATA

INPUT or DIN side. Plugging into the DATA OUT or DOUT side is a common mistake!

The connections are labeled and some formats have arrows to indicate the direction

the data must flow.

For powering the pixels from the board, the 3.3V regulator output can handle about

500mA peak which is about 50 pixels with 'average' use. If you want really bright

lights and a lot of pixels, we recommend powering direct from an external power

source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad

has direct power from USB or the battery, depending on which is higher voltage.

On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express

and ItsyBitsy M4 Express the USB or BAT pins will give you direct power from

the USB port or battery.

On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of

whether it's powered via USB or the DC jack.

On QT Py M0, use the 5V pin.

If the power to the NeoPixels is greater than 5.5V you may have some difficulty

driving some strips, in which case you may need to lower the voltage to 4.5-5V or use

a level shifter.

•

•

•

•

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The

voltage can reach 9V and this can destroy your NeoPixels!

Note that the wire ordering on your NeoPixel strip or shape may not exactly

match the diagram above. Check the markings to verify which pin is DIN, 5V and

GND

©Adafruit Industries Page 150 of 228

The Code

This example includes multiple visual effects.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_NeoPixel/ and then click on the directory that matches the

version of CircuitPython you're using and copy the contents of that directory to your C

IRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials NeoPixel example"""

import time

import board

from rainbowio import colorwheel

import neopixel

pixel_pin = board.A1

num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False)

def color_chase(color, wait):

 for i in range(num_pixels):

 pixels[i] = color

 time.sleep(wait)

 pixels.show()

 time.sleep(0.5)

def rainbow_cycle(wait):

 for j in range(255):

 for i in range(num_pixels):

 rc_index = (i * 256 // num_pixels) + j

©Adafruit Industries Page 151 of 228

 pixels[i] = colorwheel(rc_index & 255)

 pixels.show()

 time.sleep(wait)

RED = (255, 0, 0)

YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)

CYAN = (0, 255, 255)

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

while True:

 pixels.fill(RED)

 pixels.show()

 # Increase or decrease to change the speed of the solid color change.

 time.sleep(1)

 pixels.fill(GREEN)

 pixels.show()

 time.sleep(1)

 pixels.fill(BLUE)

 pixels.show()

 time.sleep(1)

 color_chase(RED, 0.1) # Increase the number to slow down the color chase

 color_chase(YELLOW, 0.1)

 color_chase(GREEN, 0.1)

 color_chase(CYAN, 0.1)

 color_chase(BLUE, 0.1)

 color_chase(PURPLE, 0.1)

 rainbow_cycle(0) # Increase the number to slow down the rainbow

Create the LED

The first thing we'll do is create the LED object. The NeoPixel object has two required

arguments and two optional arguments. You are required to set the pin you're using

to drive your NeoPixels and provide the number of pixels you intend to use. You can

optionally set brightness and auto_write .

NeoPixels can be driven by any pin. We've chosen A1. To set the pin, assign the

variable pixel_pin to the pin you'd like to use, in our case board.A1 .

To provide the number of pixels, assign the variable num_pixels to the number of

pixels you'd like to use. In this example, we're using a strip of 8 .

We've chosen to set brightness=0.3 , or 30%.

By default, auto_write=True , meaning any changes you make to your pixels will be

sent automatically. Since True is the default, if you use that setting, you don't need

to include it in your LED object at all. We've chosen to set auto_write=False . If you

set auto_write=False , you must include pixels.show() each time you'd like to

send data to your pixels. This makes your code more complicated, but it can make

your LED animations faster!

©Adafruit Industries Page 152 of 228

NeoPixel Helpers

Next we've included a few helper functions to create the super fun visual effects

found in this code. First is wheel() which we just learned with the Internal RGB LED (

). Then we have color_chase() which requires you to provide a color and the

amount of time in seconds you'd like between each step of the chase. Next we have

rainbow_cycle() , which requires you to provide the mount of time in seconds

you'd like the animation to take. Last, we've included a list of variables for our colors.

This makes it much easier if to reuse the colors anywhere in the code, as well as add

more colors for use in multiple places. Assigning and using RGB colors is explained in

this section of the CircuitPython Internal RGB LED page ().

Main Loop

Thanks to our helpers, our main loop is quite simple. We include the code to set every

NeoPixel we're using to red, green and blue for 1 second each. Then we call color_c

hase() , one time for each color on our list with 0.1 second delay between setting

each subsequent LED the same color during the chase. Last we call rainbow_cycle(

0) , which means the animation is as fast as it can be. Increase both of those numbers

to slow down each animation!

Note that the longer your strip of LEDs, the longer it will take for the animations to

complete.

NeoPixel RGBW

NeoPixels are available in RGB, meaning there are three LEDs inside, red, green and

blue. They're also available in RGBW, which includes four LEDs, red, green, blue and

white. The code for RGBW NeoPixels is a little bit different than RGB.

If you run RGB code on RGBW NeoPixels, approximately 3/4 of the LEDs will light up

and the LEDs will be the incorrect color even though they may appear to be changing.

This is because NeoPixels require a piece of information for each available color (red,

green, blue and possibly white).

Therefore, RGB LEDs require three pieces of information and RGBW LEDs require

FOUR pieces of information to work. So when you create the LED object for RGBW

We have a ton more information on general purpose NeoPixel know-how at our

NeoPixel UberGuide https://learn.adafruit.com/adafruit-neopixel-uberguide

©Adafruit Industries Page 153 of 228

file:///home/circuitpython-essentials/circuitpython-internal-rgb-led
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-neopixel-uberguide

LEDs, you'll include pixel_order=(1, 0, 2, 3) , which sets the pixel order and

indicates four pieces of information involved.

Then, you must include an extra number in every color tuple you create. For example,

red will be (255, 0, 0, 0) . This is how you send the fourth piece of information.

Check out the example below to see how our NeoPixel code looks for using with

RGBW LEDs!

The Code

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_NeoPixel_RGBW/ and then click on the directory that matches

the version of CircuitPython you're using and copy the contents of that directory to

your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials NeoPixel RGBW example"""

import time

import board

import neopixel

pixel_pin = board.A1

num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False,

 pixel_order=(1, 0, 2, 3))

def colorwheel(pos):

 # Input a value 0 to 255 to get a color value.

 # The colours are a transition r - g - b - back to r.

©Adafruit Industries Page 154 of 228

 if pos < 0 or pos > 255:

 return (0, 0, 0, 0)

 if pos < 85:

 return (255 - pos * 3, pos * 3, 0, 0)

 if pos < 170:

 pos -= 85

 return (0, 255 - pos * 3, pos * 3, 0)

 pos -= 170

 return (pos * 3, 0, 255 - pos * 3, 0)

def color_chase(color, wait):

 for i in range(num_pixels):

 pixels[i] = color

 time.sleep(wait)

 pixels.show()

 time.sleep(0.5)

def rainbow_cycle(wait):

 for j in range(255):

 for i in range(num_pixels):

 rc_index = (i * 256 // num_pixels) + j

 pixels[i] = colorwheel(rc_index & 255)

 pixels.show()

 time.sleep(wait)

RED = (255, 0, 0, 0)

YELLOW = (255, 150, 0, 0)

GREEN = (0, 255, 0, 0)

CYAN = (0, 255, 255, 0)

BLUE = (0, 0, 255, 0)

PURPLE = (180, 0, 255, 0)

while True:

 pixels.fill(RED)

 pixels.show()

 # Increase or decrease to change the speed of the solid color change.

 time.sleep(1)

 pixels.fill(GREEN)

 pixels.show()

 time.sleep(1)

 pixels.fill(BLUE)

 pixels.show()

 time.sleep(1)

 color_chase(RED, 0.1) # Increase the number to slow down the color chase

 color_chase(YELLOW, 0.1)

 color_chase(GREEN, 0.1)

 color_chase(CYAN, 0.1)

 color_chase(BLUE, 0.1)

 color_chase(PURPLE, 0.1)

 rainbow_cycle(0) # Increase the number to slow down the rainbow

Read the Docs

For a more in depth look at what neopixel can do, check out NeoPixel on Read the

Docs ().

©Adafruit Industries Page 155 of 228

https://circuitpython.readthedocs.io/projects/neopixel/en/latest/
https://circuitpython.readthedocs.io/projects/neopixel/en/latest/

CircuitPython DotStar

DotStars use two wires, unlike NeoPixel's one wire. They're very similar but you can

write to DotStars much faster with hardware SPI and they have a faster PWM cycle so

they are better for light painting.

Any pins can be used but if the two pins can form a hardware SPI port, the library will

automatically switch over to hardware SPI. If you use hardware SPI then you'll get 4

MHz clock rate (that would mean updating a 64 pixel strand in about 500uS - that's

0.0005 seconds). If you use non-hardware SPI pins you'll drop down to about 3KHz,

1000 times as slow!

You can drive 300 DotStar LEDs with brightness control (set brightness=1.0 in

object creation) and 1000 LEDs without. That's because to adjust the brightness we

have to dynamically recreate the data-stream each write.

You'll need the adafruit_dotstar.mpy library if you don't already have it in your /lib

folder! You can get it from the CircuitPython Library Bundle (). If you need help

installing the library, check out the CircuitPython Libraries page ().

Wire It Up

You'll need to solder up your DotStars first. Verify your connection is on the DATA

INPUT or DI and CLOCK INPUT or CI side. Plugging into the DATA OUT/DO or CLOCK

OUT/CO side is a common mistake! The connections are labeled and some formats

have arrows to indicate the direction the data must flow. Always verify your wiring

with a visual inspection, as the order of the connections can differ from strip to strip!

For powering the pixels from the board, the 3.3V regulator output can handle about

500mA peak which is about 50 pixels with 'average' use. If you want really bright

©Adafruit Industries Page 156 of 228

https://circuitpython.org/libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries

lights and a lot of pixels, we recommend powering direct from an external power

source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad

has direct power from USB or the battery, depending on which is higher voltage.

On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express

and ItsyBitsy M4 Express the USB or BAT pins will give you direct power from

the USB port or battery.

On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of

whether it's powered via USB or the DC jack.

On QT Py M0, use the 5V pin.

If the power to the DotStars is greater than 5.5V you may have some difficulty driving

some strips, in which case you may need to lower the voltage to 4.5-5V or use a level

shifter.

The Code

This example includes multiple visual effects.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

•

•

•

•

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The

voltage can reach 9V and this can destroy your DotStars!

Note that the wire ordering on your DotStar strip or shape may not exactly match

the diagram above. Check the markings to verify which pin is DIN, CIN, 5V and

GND

©Adafruit Industries Page 157 of 228

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_DotStar/ and then click on the directory that matches the version

of CircuitPython you're using and copy the contents of that directory to your CIRCUIT

PY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials DotStar example"""

import time

from rainbowio import colorwheel

import adafruit_dotstar

import board

num_pixels = 30

pixels = adafruit_dotstar.DotStar(board.A1, board.A2, num_pixels, brightness=0.1,

auto_write=False)

def color_fill(color, wait):

 pixels.fill(color)

 pixels.show()

 time.sleep(wait)

def slice_alternating(wait):

 pixels[::2] = [RED] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [ORANGE] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[::2] = [YELLOW] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [GREEN] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[::2] = [TEAL] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [CYAN] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[::2] = [BLUE] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [PURPLE] * (num_pixels // 2)

©Adafruit Industries Page 158 of 228

 pixels.show()

 time.sleep(wait)

 pixels[::2] = [MAGENTA] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [WHITE] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

def slice_rainbow(wait):

 pixels[::6] = [RED] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[1::6] = [ORANGE] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[2::6] = [YELLOW] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[3::6] = [GREEN] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[4::6] = [BLUE] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[5::6] = [PURPLE] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

def rainbow_cycle(wait):

 for j in range(255):

 for i in range(num_pixels):

 rc_index = (i * 256 // num_pixels) + j

 pixels[i] = colorwheel(rc_index & 255)

 pixels.show()

 time.sleep(wait)

RED = (255, 0, 0)

YELLOW = (255, 150, 0)

ORANGE = (255, 40, 0)

GREEN = (0, 255, 0)

TEAL = (0, 255, 120)

CYAN = (0, 255, 255)

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

MAGENTA = (255, 0, 20)

WHITE = (255, 255, 255)

while True:

 # Change this number to change how long it stays on each solid color.

 color_fill(RED, 0.5)

 color_fill(YELLOW, 0.5)

 color_fill(ORANGE, 0.5)

 color_fill(GREEN, 0.5)

 color_fill(TEAL, 0.5)

 color_fill(CYAN, 0.5)

 color_fill(BLUE, 0.5)

 color_fill(PURPLE, 0.5)

 color_fill(MAGENTA, 0.5)

 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.

 slice_alternating(0.1)

 color_fill(WHITE, 0.5)

©Adafruit Industries Page 159 of 228

 # Increase or decrease this to speed up or slow down the animation.

 slice_rainbow(0.1)

 time.sleep(0.5)

 # Increase this number to slow down the rainbow animation.

 rainbow_cycle(0)

Create the LED

The first thing we'll do is create the LED object. The DotStar object has three required

arguments and two optional arguments. You are required to set the pin you're using

for data, set the pin you'll be using for clock, and provide the number of pixels you

intend to use. You can optionally set brightness and auto_write .

DotStars can be driven by any two pins. We've chosen A1 for clock and A2 for data. To

set the pins, include the pin names at the beginning of the object creation, in this

case board.A1 and board.A2 .

To provide the number of pixels, assign the variable num_pixels to the number of

pixels you'd like to use. In this example, we're using a strip of 72 .

We've chosen to set brightness=0.1 , or 10%.

By default, auto_write=True , meaning any changes you make to your pixels will be

sent automatically. Since True is the default, if you use that setting, you don't need

to include it in your LED object at all. We've chosen to set auto_write=False . If you

set auto_write=False , you must include pixels.show() each time you'd like to

send data to your pixels. This makes your code more complicated, but it can make

your LED animations faster!

DotStar Helpers

We've included a few helper functions to create the super fun visual effects found in

this code.

First is wheel() which we just learned with the Internal RGB LED (). Then we have

color_fill() which requires you to provide a color and the length of time you'd

like it to be displayed. Next, are slice_alternating() , slice_rainbow() , and ra

We've chosen pins A1 and A2, but these are not SPI pins on all boards. DotStars

respond faster when using hardware SPI!

©Adafruit Industries Page 160 of 228

file:///home/circuitpython-essentials/circuitpython-internal-rgb-led

inbow_cycle() which require you to provide the amount of time in seconds you'd

between each step of the animation.

Last, we've included a list of variables for our colors. This makes it much easier if to

reuse the colors anywhere in the code, as well as add more colors for use in multiple

places. Assigning and using RGB colors is explained in this section of the

CircuitPython Internal RGB LED page ().

The two slice helpers utilise a nifty feature of the DotStar library that allows us to use

math to light up LEDs in repeating patterns. slice_alternating() first lights up the

even number LEDs and then the odd number LEDs and repeats this back and forth. s

lice_rainbow() lights up every sixth LED with one of the six rainbow colors until the

strip is filled. Both use our handy color variables. This slice code only works when the

total number of LEDs is divisible by the slice size, in our case 2 and 6. DotStars come

in strips of 30, 60, 72, and 144, all of which are divisible by 2 and 6. In the event that

you cut them into different sized strips, the code in this example may not work without

modification. However, as long as you provide a total number of LEDs that is divisible

by the slices, the code will work.

Main Loop

Our main loop begins by calling color_fill() once for each color on our list and

sets each to hold for 0.5 seconds. You can change this number to change how fast

each color is displayed. Next, we call slice_alternating(0.1) , which means

there's a 0.1 second delay between each change in the animation. Then, we fill the

strip white to create a clean backdrop for the rainbow to display. Then, we call

slice_rainbow(0.1) , for a 0.1 second delay in the animation. Last we call

rainbow_cycle(0) , which means it's as fast as it can possibly be. Increase or

decrease either of these numbers to speed up or slow down the animations!

Note that the longer your strip of LEDs is, the longer it will take for the animations to

complete.

Is it SPI?

We explained at the beginning of this section that the LEDs respond faster if you're

using hardware SPI. On some of the boards, there are HW SPI pins directly available

We have a ton more information on general purpose DotStar know-how at our

DotStar UberGuide https://learn.adafruit.com/adafruit-dotstar-leds

©Adafruit Industries Page 161 of 228

file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-dotstar-leds

in the form of MOSI and SCK. However, hardware SPI is available on more than just

those pins. But, how can you figure out which? Easy! We wrote a handy script.

We chose pins A1 and A2 for our example code. To see if these are hardware SPI on

the board you're using, copy and paste the code into code.py using your favorite

editor, and save the file. Then connect to the serial console to see the results.

To check if other pin combinations have hardware SPI, change the pin names on the

line reading: if is_hardware_SPI(board.A1, board.A2): to the pins you want to

use. Then, check the results in the serial console. Super simple!

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/SPI_Test_Script/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Hardware SPI pin verification script"""

import board

import busio

def is_hardware_spi(clock_pin, data_pin):

 try:

 p = busio.SPI(clock_pin, data_pin)

 p.deinit()

 return True

 except ValueError:

 return False

Provide the two pins you intend to use.

if is_hardware_spi(board.A1, board.A2):

 print("This pin combination is hardware SPI!")

else:

 print("This pin combination isn't hardware SPI.")

©Adafruit Industries Page 162 of 228

Read the Docs

For a more in depth look at what dotstar can do, check out DotStar on Read the

Docs ().

CircuitPython UART Serial

In addition to the USB-serial connection you use for the REPL, there is also a hardwar

e UART you can use. This is handy to talk to UART devices like GPSs, some sensors,

or other microcontrollers!

This quick-start example shows how you can create a UART device for communicating

with hardware serial devices.

To use this example, you'll need something to generate the UART data. We've used a

GPS! Note that the GPS will give you UART data without getting a fix on your location.

You can use this example right from your desk! You'll have data to read, it simply won't

include your actual location.

LED + to QT Py SCK

LED - to 470Ω resistor

470Ω resistor to QT Py GND

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_UART/ and then click

on the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

The QT Py M0 does not have a little red LED. Therefore, you must connect an

external LED and edit this example for it to work. Follow the wiring diagram and

steps below to run this example on QT Py M0.

©Adafruit Industries Page 163 of 228

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://learn.adafruit.com//assets/102008
https://learn.adafruit.com//assets/102008

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials UART Serial example"""

import board

import busio

import digitalio

For most CircuitPython boards:

led = digitalio.DigitalInOut(board.LED)

For QT Py M0:

led = digitalio.DigitalInOut(board.SCK)

led.direction = digitalio.Direction.OUTPUT

uart = busio.UART(board.TX, board.RX, baudrate=9600)

while True:

 data = uart.read(32) # read up to 32 bytes

 # print(data) # this is a bytearray type

 if data is not None:

 led.value = True

 # convert bytearray to string

 data_string = ''.join([chr(b) for b in data])

 print(data_string, end="")

 led.value = False

For QT Py M0, you'll need to comment out led = DigitalInOut(board.LED) and

uncomment led = DigitalInOut(board.SCK) . The UART code remains the same.

The Code

First we create the UART object. We provide the pins we'd like to use, board.TX and

board.RX , and we set the baudrate=9600 . While these pins are labeled on most of

the boards, be aware that RX and TX are not labeled on Gemma, and are labeled on

the bottom of Trinket. See the diagrams below for help with finding the correct pins

on your board.

Note: To "comment out" a line, put a # and a space before it. To "uncomment" a

line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 164 of 228

Once the object is created you read data in with read(numbytes) where you can

specify the max number of bytes. It will return a byte array type object if anything was

received already. Note it will always return immediately because there is an internal

buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None , so check for that before

continuing.

The data that is returned is in a byte array, if you want to convert it to a string, you can

use this handy line of code which will run chr() on each byte:

datastr = ''.join([chr(b) for b in data]) # convert bytearray to

string

Your results will look something like this:

Wire It Up

You'll need a couple of things to connect the GPS to your board.

For more information about the data you're reading and the Ultimate GPS, check

out the Ultimate GPS guide: https://learn.adafruit.com/adafruit-ultimate-gps

©Adafruit Industries Page 165 of 228

https://learn.adafruit.com/adafruit-ultimate-gps

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to

connect to the Flora Ultimate GPS Module.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express,

you'll need a breadboard and jumper wires to connect to the Ultimate GPS Breakout.

We've included diagrams show you how to connect the GPS to your board. In these

diagrams, the wire colors match the same pins on each board.

The black wire connects between the ground pins.

The red wire connects between the power pins on the GPS and your board.

The blue wire connects from TX on the GPS to RX on your board.

The white wire connects from RX on the GPS to TX on your board.

Check out the list below for a diagram of your specific board!

Circuit Playground Express and Circuit

Playground Bluefruit

Connect 3.3v on your CPX to 3.3v on your

GPS.

Connect GND on your CPX to GND on

your GPS.

Connect RX/A6 on your CPX to TX on your

GPS.

Connect TX/A7 on your CPX to RX on your

GPS.

•

•

•

•

Watch out! A common mixup with UART serial is that RX on one board connects

to TX on the other! However, sometimes boards have RX labeled TX and vice

versa. So, you'll want to start with RX connected to TX, but if that doesn't work,

try the other way around!

©Adafruit Industries Page 166 of 228

https://learn.adafruit.com//assets/52309
https://learn.adafruit.com//assets/52309

Trinket M0

Connect USB on the Trinket to VIN on the

GPS.

Connect Gnd on the Trinket to GND on the

GPS.

Connect D3 on the Trinket to TX on the

GPS.

Connect D4 on the Trinket to RX on the

GPS.

Gemma M0

Connect 3vo on the Gemma to 3.3v on the

GPS.

Connect GND on the Gemma to GND on

the GPS.

Connect A1/D2 on the Gemma to TX on

the GPS.

Connect A2/D0 on the Gemma to RX on

the GPS.

QT Py M0

Connect 3V on the QT Py to VIN on the

GPS.

Connect GND on the QT Py to GND on the

GPS.

Connect RX on the QT Py to TX on the

GPS.

Connect TX on the QT Py to RX on the

GPS.

©Adafruit Industries Page 167 of 228

https://learn.adafruit.com//assets/52310
https://learn.adafruit.com//assets/52310
https://learn.adafruit.com//assets/52311
https://learn.adafruit.com//assets/52311
https://learn.adafruit.com//assets/97860
https://learn.adafruit.com//assets/97860

Feather M0 Express and Feather M4

Express

Connect USB on the Feather to VIN on the

GPS.

Connect GND on the Feather to GND on

the GPS.

Connect RX on the Feather to TX on the

GPS.

Connect TX on the Feather to RX on the

GPS.

ItsyBitsy M0 Express and ItsyBitsy M4

Express

Connect USB on the ItsyBitsy to VIN on

the GPS

Connect G on the ItsyBitsy to GND on the

GPS.

Connect RX/0 on the ItsyBitsy to TX on the

GPS.

Connect TX/1 on the ItsyBitsy to RX on the

GPS.

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the

GPS.

Connect GND on the Metro to GND on the

GPS.

Connect RX/D0 on the Metro to TX on the

GPS.

Connect TX/D1 on the Metro to RX on the

GPS.

Where's my UART?

On the SAMD21, we have the flexibility of using a wide range of pins for UART.

Compare this to some chips like the ESP8266 with fixed UART pins. The good news is

you can use many but not all pins. Given the large number of SAMD boards we have,

its impossible to guarantee anything other than the labeled 'TX' and 'RX'. So, if you

©Adafruit Industries Page 168 of 228

https://learn.adafruit.com//assets/52312
https://learn.adafruit.com//assets/52312
https://learn.adafruit.com//assets/52324
https://learn.adafruit.com//assets/52324
https://learn.adafruit.com//assets/52328
https://learn.adafruit.com//assets/52328

want some other setup, or multiple UARTs, how will you find those pins? Easy! We've

written a handy script.

These are the results from a Trinket M0, your output may vary and it might be very

long. For more details about UARTs and SERCOMs check out our detailed guide here

()

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/UART_Test_Script/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials UART possible pin-pair identifying script"""

import board

import busio

from microcontroller import Pin

def is_hardware_uart(tx, rx):

 try:

 p = busio.UART(tx, rx)

 p.deinit()

 return True

 except ValueError:

 return False

def get_unique_pins():

 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']

©Adafruit Industries Page 169 of 228

file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

 pins = [pin for pin in [

 getattr(board, p) for p in dir(board) if p not in exclude]

 if isinstance(pin, Pin)]

 unique = []

 for p in pins:

 if p not in unique:

 unique.append(p)

 return unique

for tx_pin in get_unique_pins():

 for rx_pin in get_unique_pins():

 if rx_pin is tx_pin:

 continue

 if is_hardware_uart(tx_pin, rx_pin):

 print("RX pin:", rx_pin, "\t TX pin:", tx_pin)

Trinket M0: Create UART before I2C

On the Trinket M0 (only), if you are using both UART and I2C, you must create the

UART object first, e.g.:

>>> import board

>>> uart = board.UART() # Uses pins 4 and 3 for TX and RX, baudrate 9600.

>>> i2c = board.I2C() # Uses pins 2 and 0 for SCL and SDA.

or alternatively,

Creating the I2C object first does not work:

>>> import board

>>> i2c = board.I2C() # Uses pins 2 and 0 for SCL and SDA.

>>> uart = board.UART() # Uses pins 4 and 3 for TX and RX, baudrate 9600.

Traceback (most recent call last):

File "", line 1, in

ValueError: Invalid pins

CircuitPython I2C

I2C is a 2-wire protocol for communicating with simple sensors and devices, meaning

it uses two connections for transmitting and receiving data. There are many I2C

devices available and they're really easy to use with CircuitPython. We have libraries

available for many I2C devices in the library bundle (). (If you don't see the sensor

you're looking for, keep checking back, more are being written all the time!)

In this section, we're going to do is learn how to scan the I2C bus for all connected

devices. Then we're going to learn how to interact with an I2C device.

©Adafruit Industries Page 170 of 228

https://circuitpython.org/libraries

We'll be using the Adafruit TSL2591 (), a common, low-cost light sensor. While the

exact code we're running is specific to the TSL2591 the overall process is the same

for just about any I2C sensor or device.

These examples will use the TSL2591 lux sensor breakout. The first thing you'll want

to do is get the sensor connected so your board has I2C to talk to.

Wire It Up

You'll need a couple of things to connect the TSL2591 to your board. The TSL2591

comes with STEMMA QT / QWIIC connectors on it, which makes it super simple to

wire it up. No further soldering required!

For Gemma M0, Circuit Playground Express and Circuit Playground Bluefruit, you can

use use the STEMMA QT to alligator clips cable () to connect to the TSL2591.

For Trinket M0, Feather M0 and M4 Express, Metro M0 and M4 Express and ItsyBitsy

M0 and M4 Express, you'll need a breadboard and STEMMA QT to male jumper wires

cable () to connect to the TSL2591.

For QT Py M0, you'll need a STEMMA QT cable () to connect to the TSL2591.

We've included diagrams show you how to connect the TSL2591 to your board. In

these diagrams, the wire colors match the STEMMA QT cables and connect to the

same pins on each board.

The black wire connects from GND on the TSL2591 to ground on your board.

The red wire connects from VIN on the TSL2591 to power on your board.

The yellow wire connects from SCL on the TSL2591 to SCL on your board.

The blue wire connects from SDA on the TSL2591 to SDA on your board.

Check out the list below for a diagram of your specific board!

•

•

•

•

Be aware that the Adafruit microcontroller boards do not have I2C pullup

resistors built in! All of the Adafruit breakouts do, but if you're building your own

board or using a non-Adafruit breakout, you must add 2.2K-10K ohm pullups on

both SDA and SCL to the 3.3V.

©Adafruit Industries Page 171 of 228

https://www.adafruit.com/product/1980
https://www.adafruit.com/product/4398
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4210

Circuit Playground Express and Circuit

Playground Bluefruit

Connect 3.3v on your CPX to 3.3v on your

TSL2591.

Connect GND on your CPX to GND on

your TSL2591.

Connect SCL/A4 on your CPX to SCL on

your TSL2591.

Connect SDL/A5 on your CPX to SDA on

your TSL2591.

Trinket M0

Connect USB on the Trinket to VIN on the

TSL2591.

Connect Gnd on the Trinket to GND on the

TSL2591.

Connect D2 on the Trinket to SCL on the

TSL2591.

Connect D0 on the Trinket to SDA on the

TSL2591.

Gemma M0

Connect 3vo on the Gemma to 3V on the

TSL2591.

Connect GND on the Gemma to GND on

the TSL2591.

Connect A1/D2 on the Gemma to SCL on

the TSL2591.

Connect A2/D0 on the Gemma to SDA on

the TSL2591.

©Adafruit Industries Page 172 of 228

https://learn.adafruit.com//assets/97884
https://learn.adafruit.com//assets/97884
https://learn.adafruit.com//assets/97885
https://learn.adafruit.com//assets/97885
https://learn.adafruit.com//assets/97886
https://learn.adafruit.com//assets/97886

QT Py M0

If using the STEMMA QT cable:

Connect the STEMMA QT cable from the

connector on the QT Py to the connector

on the TSL2591.

Alternatively, if using a breadboard:

Connect 3V on the QT Py to VIN on the

TSL2591.

Connect GND on the QT Py to GND on the

TSL2591.

Connect SCL on the QT Py to SCL on the

TSL2591.

Connect SDA on the QT Py to SDA on the

TSL2591.

Feather M0 Express and Feather M4

Express

Connect USB on the Feather to VIN on the

TSL2591.

Connect GND on the Feather to GND on

the TSL2591.

Connect SCL on the Feather to SCL on the

TSL2591.

Connect SDA on the Feather to SDA on

the TSL2591.

ItsyBitsy M0 Express and ItsyBitsy M4

Express

Connect USB on the ItsyBitsy to VIN on

the TSL2591

Connect G on the ItsyBitsy to GND on the

TSL2591.

Connect SCL on the ItsyBitsy to SCL on

the TSL2591.

Connect SDA on the ItsyBitsy to SDA on

the TSL2591.

©Adafruit Industries Page 173 of 228

https://learn.adafruit.com//assets/97890
https://learn.adafruit.com//assets/97890
https://learn.adafruit.com//assets/97887
https://learn.adafruit.com//assets/97887
https://learn.adafruit.com//assets/97888
https://learn.adafruit.com//assets/97888

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the

TSL2591.

Connect GND on the Metro to GND on the

TSL2591.

Connect SCL on the Metro to SCL on the

TSL2591.

Connect SDA on the Metro to SDA on the

TSL2591.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's

wired correctly. We're going to do an I2C scan to see if the board is detected, and if it

is, print out its I2C address.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_I2C_Scan/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython I2C Device Address Scan"""

If you run this and it seems to hang, try manually unlocking

your I2C bus from the REPL with

>>> import board

>>> board.I2C().unlock()

import time

import board

To use default I2C bus (most boards)

©Adafruit Industries Page 174 of 228

https://learn.adafruit.com//assets/97889
https://learn.adafruit.com//assets/97889

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

To create I2C bus on specific pins

import busio

i2c = busio.I2C(board.SCL1, board.SDA1) # QT Py RP2040 STEMMA connector

i2c = busio.I2C(board.GP1, board.GP0) # Pi Pico RP2040

while not i2c.try_lock():

 pass

try:

 while True:

 print(

 "I2C addresses found:",

 [hex(device_address) for device_address in i2c.scan()],

)

 time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop

 i2c.unlock()

First we create the i2c object, using board.I2C() . This convenience routine

creates and saves a busio.I2C object using the default pins board.SCL and

board.SDA . If the object has already been created, then the existing object is

returned. No matter how many times you call board.I2C() , it will return the same

object. This is called a singleton.

To be able to scan it, we need to lock the I2C down so the only thing accessing it is

the code. So next we include a loop that waits until I2C is locked and then continues

on to the scan function.

Last, we have the loop that runs the actual scan, i2c_scan() . Because I2C typically

refers to addresses in hex form, we've included this bit of code that formats the

results into hex format: [hex(device_address) for device_address in

i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses.

We've connected the TSL2591 which has a 7-bit I2C address of 0x29. The result for

this sensor is I2C addresses found: ['0x29'] . If no addresses are returned, refer

back to the wiring diagrams to make sure you've wired up your sensor correctly.

I2C Sensor Data

Now we know for certain that our sensor is connected and ready to go. Let's find out

how to get the data from our sensor!

©Adafruit Industries Page 175 of 228

Installing Project Code

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_I2C_TSL2591/ and then click on the directory that matches the

version of CircuitPython you're using and copy the contents of that directory to your C

IRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials I2C sensor example using TSL2591"""

import time

import board

import adafruit_tsl2591

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

Lock the I2C device before we try to scan

while not i2c.try_lock():

 pass

Print the addresses found once

print("I2C addresses found:", [hex(device_address) for device_address in

i2c.scan()])

Unlock I2C now that we're done scanning.

i2c.unlock()

Create library object on our I2C port

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

Use the object to print the sensor readings

while True:

 print("Lux:", tsl2591.lux)

 time.sleep(0.5)

©Adafruit Industries Page 176 of 228

This code begins the same way as the scan code. We've included the scan code so

you have verification that your sensor is wired up correctly and is detected. It prints

the address once. After the scan, we unlock I2C with i2c_unlock() so we can use

the sensor for data.

We create our sensor object using the sensor library. We call it tsl2591 and provide

it the i2c object.

Then we have a simple loop that prints out the lux reading using the sensor object we

created. We add a time.sleep(1.0) , so it only prints once per second. Connect to

the serial console to see the results. Try shining a light on it to see the results change!

Where's my I2C?

On the SAMD21, SAMD51 and nRF52840, we have the flexibility of using a wide range

of pins for I2C. On the nRF52840, any pin can be used for I2C! Some chips, like the

ESP8266, require using bitbangio, but can also use any pins for I2C. There's some

other chips that may have fixed I2C pin.

The good news is you can use many but not all pins. Given the large number of SAMD

boards we have, its impossible to guarantee anything other than the labeled 'SDA'

and 'SCL'. So, if you want some other setup, or multiple I2C interfaces, how will you

find those pins? Easy! We've written a handy script.

These are the results from an ItsyBitsy M0 Express. Your output may vary and it might

be very long. For more details about I2C and SERCOMs, check out our detailed guide

here ().

©Adafruit Industries Page 177 of 228

file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports
file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/I2C_Test_Script/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials I2C possible pin-pair identifying script"""

import board

import busio

from microcontroller import Pin

def is_hardware_I2C(scl, sda):

 try:

 p = busio.I2C(scl, sda)

 p.deinit()

 return True

 except ValueError:

 return False

 except RuntimeError:

 return True

def get_unique_pins():

 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']

 pins = [pin for pin in [

 getattr(board, p) for p in dir(board) if p not in exclude]

 if isinstance(pin, Pin)]

 unique = []

©Adafruit Industries Page 178 of 228

 for p in pins:

 if p not in unique:

 unique.append(p)

 return unique

for scl_pin in get_unique_pins():

 for sda_pin in get_unique_pins():

 if scl_pin is sda_pin:

 continue

 if is_hardware_I2C(scl_pin, sda_pin):

 print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)

CircuitPython HID Keyboard and Mouse

One of the things we baked into CircuitPython is 'HID' (Human Interface Device)

control - that means keyboard and mouse capabilities. This means your CircuitPython

board can act like a keyboard device and press key commands, or a mouse and have

it move the mouse pointer around and press buttons. This is really handy because

even if you cannot adapt your software to work with hardware, there's almost always

a keyboard interface - so if you want to have a capacitive touch interface for a game,

say, then keyboard emulation can often get you going really fast!

This section walks you through the code to create a keyboard or mouse emulator.

First we'll go through an example that uses pins on your board to emulate keyboard

input. Then, we will show you how to wire up a joystick to act as a mouse, and cover

the code needed to make that happen.

CircuitPython Keyboard Emulator

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

ntials/CircuitPython_HID_Keyboard/ and then click on the directory that matches the

version of CircuitPython you're using and copy the contents of that directory to your C

IRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 179 of 228

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials HID Keyboard example"""

import time

import board

import digitalio

import usb_hid

from adafruit_hid.keyboard import Keyboard

from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS

from adafruit_hid.keycode import Keycode

A simple neat keyboard demo in CircuitPython

The pins we'll use, each will have an internal pullup

keypress_pins = [board.A1, board.A2]

Our array of key objects

key_pin_array = []

The Keycode sent for each button, will be paired with a control key

keys_pressed = [Keycode.A, "Hello World!\n"]

control_key = Keycode.SHIFT

The keyboard object!

time.sleep(1) # Sleep for a bit to avoid a race condition on some systems

keyboard = Keyboard(usb_hid.devices)

keyboard_layout = KeyboardLayoutUS(keyboard) # We're in the US :)

Make all pin objects inputs with pullups

for pin in keypress_pins:

 key_pin = digitalio.DigitalInOut(pin)

 key_pin.direction = digitalio.Direction.INPUT

 key_pin.pull = digitalio.Pull.UP

 key_pin_array.append(key_pin)

For most CircuitPython boards:

led = digitalio.DigitalInOut(board.LED)

For QT Py M0:

led = digitalio.DigitalInOut(board.SCK)

led.direction = digitalio.Direction.OUTPUT

print("Waiting for key pin...")

while True:

 # Check each pin

 for key_pin in key_pin_array:

 if not key_pin.value: # Is it grounded?

 i = key_pin_array.index(key_pin)

 print("Pin #%d is grounded." % i)

 # Turn on the red LED

 led.value = True

 while not key_pin.value:

 pass # Wait for it to be ungrounded!

©Adafruit Industries Page 180 of 228

 # "Type" the Keycode or string

 key = keys_pressed[i] # Get the corresponding Keycode or string

 if isinstance(key, str): # If it's a string...

 keyboard_layout.write(key) # ...Print the string

 else: # If it's not a string...

 keyboard.press(control_key, key) # "Press"...

 keyboard.release_all() # ..."Release"!

 # Turn off the red LED

 led.value = False

 time.sleep(0.01)

Connect pin A1 or A2 to ground, using a wire or alligator clip, then disconnect it to

send the key press "A" or the string "Hello world!"

This wiring example shows A1 and A2

connected to ground.

Remember, on Trinket, A1 and A2 are

labeled 2 and 0! On other boards, you will

have A1 and A2 labeled as expected.

Create the Objects and Variables

First, we assign some variables for later use. We create three arrays assigned to

variables: keypress_pins , key_pin_array , and keys_pressed . The first is the

pins we're going to use. The second is empty because we're going to fill it later. The

third is what we would like our "keyboard" to output - in this case the letter "A" and the

phrase, "Hello world!". We create our last variable assigned to control_key which

allows us to later apply the shift key to our keypress. We'll be using two keypresses,

but you can have up to six keypresses at once.

Next keyboard and keyboard_layout objects are created. We only have US right

now (if you make other layouts please submit a GitHub pull request!). The

time.sleep(1) avoids an error that can happen if the program gets run as soon as

the board gets plugged in, before the host computer finishes connecting to the board.

Then we take the pins we chose above, and create the pin objects, set the direction

and give them each a pullup. Then we apply the pin objects to key_pin_array so

we can use them later.

©Adafruit Industries Page 181 of 228

https://learn.adafruit.com//assets/52710
https://learn.adafruit.com//assets/52710

Next we set up the little red LED to so we can use it as a status light.

The last thing we do before we start our loop is print , "Waiting for key pin..." so you

know the code is ready and waiting!

The Main Loop

Inside the loop, we check each pin to see if the state has changed, i.e. you connected

the pin to ground. Once it changes, it prints, "Pin # grounded." to let you know the

ground state has been detected. Then we turn on the red LED. The code waits for the

state to change again, i.e. it waits for you to unground the pin by disconnecting the

wire attached to the pin from ground.

Then the code gets the corresponding keys pressed from our array. If you grounded

and ungrounded A1, the code retrieves the keypress a , if you grounded and

ungrounded A2, the code retrieves the string, "Hello world!"

If the code finds that it's retrieved a string, it prints the string, using the

keyboard_layout to determine the keypresses. Otherwise, the code prints the

keypress from the control_key and the keypress "a", which result in "A". Then it

calls keyboard.release_all() . You always want to call this soon after a keypress

or you'll end up with a stuck key which is really annoying!

Instead of using a wire to ground the pins, you can try wiring up buttons like we did in

CircuitPython Digital In & Out (). Try altering the code to add more pins for more

keypress options!

Non-US Keyboard Layouts

The code above uses KeyboardLayoutUS. If you would like to emulate a non-US

keyboard, a number of other keyboard layout classes are available ().

CircuitPython Mouse Emulator

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Esse

©Adafruit Industries Page 182 of 228

file:///home/circuitpython-essentials/circuitpython-digital-in-out
https://github.com/Neradoc/Circuitpython_Keyboard_Layouts

ntials/CircuitPython_HID_Mouse/ and then click on the directory that matches the

version of CircuitPython you're using and copy the contents of that directory to your C

IRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials HID Mouse example"""

import time

import analogio

import board

import digitalio

import usb_hid

from adafruit_hid.mouse import Mouse

mouse = Mouse(usb_hid.devices)

x_axis = analogio.AnalogIn(board.A0)

y_axis = analogio.AnalogIn(board.A1)

select = digitalio.DigitalInOut(board.A2)

select.direction = digitalio.Direction.INPUT

select.pull = digitalio.Pull.UP

pot_min = 0.00

pot_max = 3.29

step = (pot_max - pot_min) / 20.0

def get_voltage(pin):

 return (pin.value * 3.3) / 65536

def steps(axis):

 """ Maps the potentiometer voltage range to 0-20 """

 return round((axis - pot_min) / step)

while True:

 x = get_voltage(x_axis)

 y = get_voltage(y_axis)

 if select.value is False:

 mouse.click(Mouse.LEFT_BUTTON)

 time.sleep(0.2) # Debounce delay

 if steps(x) > 11.0:

 # print(steps(x))

 mouse.move(x=1)

 if steps(x) < 9.0:

 # print(steps(x))

©Adafruit Industries Page 183 of 228

 mouse.move(x=-1)

 if steps(x) > 19.0:

 # print(steps(x))

 mouse.move(x=8)

 if steps(x) < 1.0:

 # print(steps(x))

 mouse.move(x=-8)

 if steps(y) > 11.0:

 # print(steps(y))

 mouse.move(y=-1)

 if steps(y) < 9.0:

 # print(steps(y))

 mouse.move(y=1)

 if steps(y) > 19.0:

 # print(steps(y))

 mouse.move(y=-8)

 if steps(y) < 1.0:

 # print(steps(y))

 mouse.move(y=8)

For this example, we've wired up a 2-axis thumb joystick with a select button. We use

this to emulate the mouse movement and the mouse left-button click. To wire up this

joytick:

Connect VCC on the joystick to the 3V on your board. Connect ground to groun

d.

Connect Xout on the joystick to pin A0 on your board.

Connect Yout on the joystick to pin A1 on your board.

Connect Sel on the joystick to pin A2 on your board.

Remember, Trinket's pins are labeled differently. Check the Trinket Pinouts page () to

verify your wiring.

•

•

•

•

©Adafruit Industries Page 184 of 228

file:///home/adafruit-trinket-m0-circuitpython-arduino/pinouts#unique-pad-capabilities

To use this demo, simply move the joystick around. The mouse will move slowly if you

move the joystick a little off center, and more quickly if you move it as far as it goes.

Press down on the joystick to click the mouse. Awesome! Now let's take a look at the

code.

Create the Objects and Variables

First we create the mouse object.

Next, we set x_axis and y_axis to pins A0 and A1 . Then we set select to A2 ,

set it as input and give it a pullup.

The x and y axis on the joystick act like 2 potentiometers. We'll be using them just like

we did in CircuitPython Analog In (). We set pot_min and pot_max to be the

minimum and maximum voltage read from the potentiometers. We assign step =

(pot_max - pot_min) / 20.0 to use in a helper function.

CircuitPython HID Mouse Helpers

First we have the get_voltage() helper so we can get the correct readings from

the potentiometers. Look familiar? We learned about it in Analog In ().

©Adafruit Industries Page 185 of 228

file:///home/circuitpython-essentials/circuitpython-analog-in
file:///home/circuitpython-essentials/circuitpython-analog-in#get-voltage-helper

Second, we have steps(axis) . To use it, you provide it with the axis you're reading.

This is where we're going to use the step variable we assigned earlier. The

potentiometer range is 0-3.29. This is a small range. It's even smaller with the joystick

because the joystick sits at the center of this range, 1.66, and the + and - of each axis

is above and below this number. Since we need to have thresholds in our code, we're

going to map that range of 0-3.29 to while numbers between 0-20.0 using this helper

function. That way we can simplify our code and use larger ranges for our thresholds

instead of trying to figure out tiny decimal number changes.

Main Loop

First we assign x and y to read the voltages from x_axis and y_axis .

Next, we check to see when the state of the select button is False . It defaults to

True when it is not pressed, so if the state is False , the button has been pressed.

When it's pressed, it sends the command to click the left mouse button. The time.sl

eep(0.2) prevents it from reading multiple clicks when you've only clicked once.

Then we use the steps() function to set our mouse movement. There are two sets

of two if statements for each axis. Remember that 10 is the center step, as we've

mapped the range 0-20 . The first set for each axis says if the joystick moves 1 step

off center (left or right for the x axis and up or down for the y axis), to move the mouse

the appropriate direction by 1 unit. The second set for each axis says if the joystick is

moved to the lowest or highest step for each axis, to move the mouse the appropriate

direction by 8 units. That way you have the option to move the mouse slowly or

quickly!

To see what step the joystick is at when you're moving it, uncomment the print

statements by removing the # from the lines that look like # print(steps(x)) ,

and connecting to the serial console to see the output. Consider only uncommenting

one set at a time, or you end up with a huge amount of information scrolling very

quickly, which can be difficult to read!

CircuitPython Storage

CircuitPython-compatible microcontrollers show up as a CIRCUITPY drive when

plugged into your computer, allowing you to edit code directly on the board. Perhaps

For more detail check out the documentation at https://

circuitpython.readthedocs.io/projects/hid/en/latest/

©Adafruit Industries Page 186 of 228

https://circuitpython.readthedocs.io/projects/hid/en/latest/
https://circuitpython.readthedocs.io/projects/hid/en/latest/

you've wondered whether or not you can write data from CircuitPython directly to the

board to act as a data logger. The answer is yes!

The storage module in CircuitPython enables you to write code that allows

CircuitPython to write data to the CIRCUITPY drive. This process requires you to

include a boot.py file on your CIRCUITPY drive, along side your code.py file.

The boot.py file is special - the code within it is executed when CircuitPython starts

up, either from a hard reset or powering up the board. It is not run on soft reset, for

example, if you reload the board from the serial console or the REPL. This is in

contrast to the code within code.py, which is executed after CircuitPython is already

running.

The CIRCUITPY drive is typically writable by your computer; this is what allows you to

edit your code directly on the board. The reason you need a boot.py file is that you

have to set the filesystem to be read-only by your computer to allow it to be writable

by CircuitPython. This is because CircuitPython cannot write to the filesystem at the

same time as your computer. Doing so can lead to filesystem corruption and loss of all

content on the drive, so CircuitPython is designed to only allow one at at time.

boot.py

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Storage logging boot.py file"""

import board

import digitalio

import storage

For Gemma M0, Trinket M0, Metro M0/M4 Express, ItsyBitsy M0/M4 Express

switch = digitalio.DigitalInOut(board.D2)

For Feather M0/M4 Express

switch = digitalio.DigitalInOut(board.D5)

For Circuit Playground Express, Circuit Playground Bluefruit

switch = digitalio.DigitalInOut(board.D7)

switch.direction = digitalio.Direction.INPUT

switch.pull = digitalio.Pull.UP

If the switch pin is connected to ground CircuitPython can write to the drive

storage.remount("/", switch.value)

You can only have either your computer edit the CIRCUITPY drive files, or

CircuitPython. You cannot have both write to the drive at the same time. (Bad

Things Will Happen so we do not allow you to do it!)

©Adafruit Industries Page 187 of 228

The storage.remount() command has a readonly keyword argument. This

argument refers to the read/write state of CircuitPython. It does NOT refer to the read/

write state of your computer.

When the physical pin is connected to ground, it returns False . The readonly argu

ment in boot.py is set to the value of the pin. When the value=True , the

CIRCUITPY drive is read-only to CircuitPython (and writable by your computer). When

the value=False , the CIRCUITPY drive is writable by CircuitPython (and read-only

by your computer).

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0

Express and ItsyBitsy M4 Express, no changes to the initial code are needed.

For Feather M0 Express and Feather M4 Express, comment out switch =

digitalio.DigitalInOut(board.D2) , and uncomment switch =

digitalio.DigitalInOut(board.D5) .

For Circuit Playground Express and Circuit Playground Bluefruit, comment out switch

= digitalio.DigitalInOut(board.D2) , and uncomment switch =

digitalio.DigitalInOut(board.D7) . Remember, D7 is the onboard slide switch,

so there's no extra wires or alligator clips needed.

On the Circuit Playground Express or Circuit Playground Bluefruit, the switch is in the

right position (closer to the ear icon on the silkscreen) it returns False , and the CIRC

UITPY drive will be writable by CircuitPython. If the switch is in the left position (closer

to the music icon on the silkscreen), it returns True , and the CIRCUITPY drive will be

writable by your computer.

Installing Project Code

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/CircuitPython_Logger/ and then click

on the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 188 of 228

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Storage logging example"""

import time

import board

import digitalio

import microcontroller

For most CircuitPython boards:

led = digitalio.DigitalInOut(board.LED)

For QT Py M0:

led = digitalio.DigitalInOut(board.SCK)

led.switch_to_output()

try:

 with open("/temperature.txt", "a") as fp:

 while True:

 temp = microcontroller.cpu.temperature

 # do the C-to-F conversion here if you would like

 fp.write('{0:f}\n'.format(temp))

 fp.flush()

 led.value = not led.value

 time.sleep(1)

except OSError as e: # Typically when the filesystem isn't writeable...

 delay = 0.5 # ...blink the LED every half second.

 if e.args[0] == 28: # If the file system is full...

 delay = 0.25 # ...blink the LED faster!

 while True:

 led.value = not led.value

 time.sleep(delay)

Logging the Temperature

The way boot.py works is by checking to see if the pin you specified in the switch

setup in your code is connected to a ground pin. If it is, it changes the read-write state

of the file system, so the CircuitPython core can begin logging the temperature to the

board.

For help finding the correct pins, see the wiring diagrams and information in the Find

the Pins section of the CircuitPython Digital In & Out guide (). Instead of wiring up a

The filesystem will NOT automatically be set to read-only after you copy these

files over! You'll still be able to edit files on CIRCUITPY after saving this boot.py.

©Adafruit Industries Page 189 of 228

file:///home/adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins
file:///home/adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins

switch, however, you'll be connecting the pin directly to ground with alligator clips or

jumper wires.

Once you copied the files to your board, eject it and unplug it from your computer. If

you're using your Circuit Playground Express, all you have to do is make sure the

switch is to the right. Otherwise, use alligator clips or jumper wires to connect the

chosen pin to ground. Then, plug your board back into your computer.

You will not be able to edit code on your CIRCUITPY drive anymore!

The red LED should blink once a second and you will see a new temperature.txt file

on CIRCUITPY.

boot.py only runs on first boot of the device, not if you re-load the serial console

with ctrl+D or if you save a file. You must EJECT the USB drive, then physically

press the reset button!

©Adafruit Industries Page 190 of 228

This file gets updated once per second, but you won't see data come in live. Instead,

when you're ready to grab the data, eject and unplug your board. For CPX, move the

switch to the left, otherwise remove the wire connecting the pin to ground. Now it will

be possible for you to write to the filesystem from your computer again, but it will not

be logging data.

We have a more detailed guide on this project available here: CPU Temperature

Logging with CircuitPython (). If you'd like more details, check it out!

CircuitPython CPU Temp

There is a CPU temperature sensor built into every ATSAMD21, ATSAMD51 and

nRF52840 chips. CircuitPython makes it really simple to read the data from this

sensor. This works on the Adafruit CircuitPython boards it's built into the

microcontroller used for these boards.

The data is read using two simple commands. We're going to enter them in the REPL.

Plug in your board, connect to the serial console (), and enter the REPL (). Then, enter

the following commands into the REPL:

import microcontroller

microcontroller.cpu.temperature

That's it! You've printed the temperature in Celsius to the REPL. Note that it's not

exactly the ambient temperature and it's not super precise. But it's close!

©Adafruit Industries Page 191 of 228

file:///home/cpu-temperature-logging-with-circuit-python
file:///home/cpu-temperature-logging-with-circuit-python
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
file:///home/welcome-to-circuitpython/the-repl

If you'd like to print it out in Fahrenheit, use this simple formula: Celsius * (9/5) + 32.

It's super easy to do math using CircuitPython. Check it out!

CircuitPython Expectations

Always Run the Latest Version of

CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop

supporting older releases. You need to update to the latest CircuitPython ().

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle ().

As we release new versions of CircuitPython, we will stop providing the previous

bundles as automatically created downloads on the Adafruit CircuitPython Library

Bundle repo. If you must continue to use an earlier version, you can still download the

appropriate version of mpy-cross from the particular release of CircuitPython on the

CircuitPython repo and create your own compatible .mpy library files. However, it is

best to update to the latest for both CircuitPython and the library bundle.

Note that the temperature sensor built into the nRF52840 has a resolution of

0.25 degrees Celsius, so any temperature you print out will be in 0.25 degree

increments.

As we continue to develop CircuitPython and create new releases, we will stop

supporting older releases. Visit https://circuitpython.org/downloads to download

the latest version of CircuitPython for your board. You must download the

CircuitPython Library Bundle that matches your version of CircuitPython. Please

update CircuitPython and then visit https://circuitpython.org/libraries to download

the latest Library Bundle.

©Adafruit Industries Page 192 of 228

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries

I have to continue using CircuitPython 3.x

or 2.x, where can I find compatible

libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles.

We highly encourage you to update CircuitPython to the latest version () and use the

current version of the libraries (). However, if for some reason you cannot update, you

can find the last available 2.x build here () and the last available 3.x build here ().

Switching Between CircuitPython and

Arduino

Many of the CircuitPython boards also run Arduino. But how do you switch between

the two? Switching between CircuitPython and Arduino is easy.

If you're currently running Arduino and would like to start using CircuitPython, follow

the steps found in Welcome to CircuitPython: Installing CircuitPython ().

If you're currently running CircuitPython and would like to start using Arduino, plug in

your board, and then load your Arduino sketch. If there are any issues, you can

double tap the reset button to get into the bootloader and then try loading your

sketch. Always backup any files you're using with CircuitPython that you want to save

as they could be deleted.

That's it! It's super simple to switch between the two.

The Difference Between Express And Non-

Express Boards

We often reference "Express" and "Non-Express" boards when discussing

CircuitPython. What does this mean?

Express refers to the inclusion of an extra 2MB flash chip on the board that provides

you with extra space for CircuitPython and your code. This means that we're able to

include more functionality in CircuitPython and you're able to do more with your code

on an Express board than you would on a non-Express board.

©Adafruit Industries Page 193 of 228

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Express boards include Circuit Playground Express, ItsyBitsy M0 Express, Feather M0

Express, Metro M0 Express and Metro M4 Express.

Non-Express boards include Trinket M0, Gemma M0, QT Py, Feather M0 Basic, and

other non-Express Feather M0 variants.

Non-Express Boards: Gemma, Trinket, and

QT Py

CircuitPython runs nicely on the Gemma M0, Trinket M0, or QT Py M0 but there are

some constraints

Small Disk Space

Since we use the internal flash for disk, and that's shared with runtime code, its

limited! Only about 50KB of space.

No Audio or NVM

Part of giving up that FLASH for disk means we couldn't fit everything in. There is, at

this time, no support for hardware audio playpack or NVM 'eeprom'. Modules audioi

o and bitbangio are not included. For that support, check out the Circuit

Playground Express or other Express boards.

However, I2C, UART, capacitive touch, NeoPixel, DotStar, PWM, analog in and out,

digital IO, logging storage, and HID do work! Check the CircuitPython Essentials for

examples of all of these.

Differences Between CircuitPython and

MicroPython

For the differences between CircuitPython and MicroPython, check out the CircuitPyth

on documentation ().

©Adafruit Industries Page 194 of 228

https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython
https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython

Differences Between CircuitPython and

Python

Python (also known as CPython) is the language that MicroPython and CircuitPython

are based on. There are many similarities, but there are also many differences. This is

a list of a few of the differences.

Python Libraries

Python is advertised as having "batteries included", meaning that many standard

libraries are included. Unfortunately, for space reasons, many Python libraries are not

available. So for instance while we wish you could import numpy , numpy isn't

available (look for the ulab library for similar functions to numpy which works on

many microcontroller boards). So you may have to port some code over yourself!

Integers in CircuitPython

On the non-Express boards, integers can only be up to 31 bits long. Integers of

unlimited size are not supported. The largest positive integer that can be represented

is 2
30

-1, 1073741823, and the most negative integer possible is -2
30

, -1073741824.

As of CircuitPython 3.0, Express boards have arbitrarily long integers as in Python.

Floating Point Numbers and Digits of Precision for Floats in CircuitPython

Floating point numbers are single precision in CircuitPython (not double precision as

in Python). The largest floating point magnitude that can be represented is about

+/-3.4e38. The smallest magnitude that can be represented with full accuracy is about

+/-1.7e-38, though numbers as small as +/-5.6e-45 can be represented with reduced

accuracy.

CircuitPython's floats have 8 bits of exponent and 22 bits of mantissa (not 24 like

regular single precision floating point), which is about five or six decimal digits of

precision.

©Adafruit Industries Page 195 of 228

Differences between MicroPython and Python

For a more detailed list of the differences between CircuitPython and Python, you can

look at the MicroPython documentation. We keep up with MicroPython stable

releases, so check out the core 'differences' they document here. ()

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino

IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

©Adafruit Industries Page 196 of 228

http://docs.micropython.org/en/latest/pyboard/genrst/index.html
http://docs.micropython.org/en/latest/pyboard/genrst/index.html
http://www.arduino.cc/en/Main/Software

We will be adding a URL to the new Additional Boards Manager URLs option. The list

of URLs is comma separated, and you will only have to add each URL once. New

Adafruit boards and updates to existing boards will automatically be picked up by the

Board Manager each time it is opened. The URLs point to index files that the Board

Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party

board URLs on the Arduino IDE wiki (). We will only need to add one URL to the IDE in

this example, but you can add multiple URLS by separating them with commas. Copy

and paste the link below into the Additional Boards Manager URLs option in the

Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/

package_adafruit_index.json

©Adafruit Industries Page 197 of 228

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

Here's a short description of each of the Adafruit supplied packages that will be

available in the Board Manager when you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4,

ItsyBitsy 32u4, Trinket, & Trinket Pro.

Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and

M4, ItsyBitsy M0 and M4, Circuit Playground Express, Gemma M0 and Trinket

M0

Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the

Flora, Feather 32u4, Micro and Leonardo using the arcore project ().

If you have multiple boards you want to support, say ESP8266 and Adafruit, have

both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings. Next we will look at

installing boards with the Board Manager.

Now continue to the next step to actually install the board support package!

Using with Arduino IDE

The Feather/Metro/Gemma/QTPy/Trinket M0 and M4 use an ATSAMD21 or ATSAMD51

chip, and you can pretty easily get it working with the Arduino IDE. Most libraries

(including the popular ones like NeoPixels and display) will work with the M0 and M4,

especially devices & sensors that use I2C or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the

previous page, you can open the Boards Manager by navigating to the Tools->Board

menu.

Once the Board Manager opens, click on the category drop down menu on the top

left hand side of the window and select All. You will then be able to select and install

the boards supplied by the URLs added to the preferences.

•

•

•

©Adafruit Industries Page 198 of 228

https://github.com/rkistner/arcore

Install SAMD Support

First up, install the latest Arduino SAMD Boards (version 1.6.11 or later)

You can type Arduino SAMD in the top search bar, then when you see the entry, click I

nstall

Install Adafruit SAMD

Next you can install the Adafruit SAMD package to add the board file definitions

Make sure you have Type All selected to the left of the Filter your search... box

You can type Adafruit SAMD in the top search bar, then when you see the entry, click I

nstall

Remember you need SETUP the Arduino IDE to support our board packages -

see the previous page on how to add adafruit's URL to the preferences

©Adafruit Industries Page 199 of 228

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly

installed. You should now be able to select and upload to the new boards listed in the

Tools->Board menu.

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)

Feather M0 Express

Metro M0 Express

Circuit Playground Express

Gemma M0

Trinket M0

QT Py M0

ItsyBitsy M0

Hallowing M0

Crickit M0 (this is for direct programming of the Crickit, which is probably not

what you want! For advanced hacking only)

Metro M4 Express

Grand Central M4 Express

ItsyBitsy M4 Express

Feather M4 Express

Trellis M4 Express

PyPortal M4

PyPortal M4 Titano

PyBadge M4 Express

Metro M4 Airlift Lite

PyGamer M4 Express

MONSTER M4SK

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 200 of 228

Hallowing M4

MatrixPortal M4

BLM Badge

Install Drivers (Windows 7 & 8 Only)

When you plug in the board, you'll need to possibly install a driver

Click below to download our Driver Installer

Download Latest Adafruit Drivers

package

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to

click through the license

•

•

•

©Adafruit Industries Page 201 of 228

https://github.com/adafruit/Adafruit_Windows_Drivers/releases

Select which drivers you want to install, the defaults will set you up with just about

every Adafruit board!

Click Install to do the installin'

©Adafruit Industries Page 202 of 228

Blink

Now you can upload your first blink sketch!

Plug in the M0 or M4 board, and wait for it to be recognized by the OS (just takes a

few seconds). It will create a serial/COM port, you can now select it from the drop-

down, it'll even be 'indicated' as Trinket/Gemma/Metro/Feather/ItsyBitsy/Trellis!

Please note, the QT Py and Trellis M4 Express are two of our very few boards that

does not have an onboard pin 13 LED so you can follow this section to practice

uploading but you wont see an LED blink!

Now load up the Blink example

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

©Adafruit Industries Page 203 of 228

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

And click upload! That's it, you will be able to see the LED blink rate change as you

adapt the delay() calls.

Successful Upload

If you have a successful upload, you'll get a bunch of red text that tells you that the

device was found and it was programmed, verified & reset

After uploading, you may see a message saying "Disk Not Ejected Properly" about the

...BOOT drive. You can ignore that message: it's an artifact of how the bootloader and

uploading work.

Compilation Issues

If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Ard

uino & Adafruit SAMD board packages

If you are having issues, make sure you selected the matching Board in the menu

that matches the hardware you have in your hand.

©Adafruit Industries Page 204 of 228

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that

crashes and doesn't auto-reboot into the bootloader, click the RST button twice (like a

double-click)to get back into the bootloader.

The red LED will pulse and/or RGB LED will be green, so you know that its in

bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and

re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want

to use the normal upload.

Ubuntu & Linux Issue Fix

 Follow the steps for installing Adafruit's udev rules on this page. ()

©Adafruit Industries Page 205 of 228

file:///home/adafruit-arduino-ide-setup/linux-setup#udev-rules

NeoPixel Blink

The QT Py does not have an onboard red LED like so many other boards. We just

didn't have any room! Instead, though, you get a very tiny RGB NeoPixel which you

can use to give visual feedback.

To use it, first install the NeoPixel library ()

This example will get you started!

#include <Adafruit_NeoPixel.h>

// create a pixel strand with 1 pixel on PIN_NEOPIXEL

Adafruit_NeoPixel pixels(1, PIN_NEOPIXEL);

void setup() {

 pixels.begin(); // initialize the pixel

}

void loop() {

 // set the first pixel #0 to red

 pixels.setPixelColor(0, pixels.Color(255, 0, 0));

 // and write the data

 pixels.show();

 delay(1000);

 // turn off the pixel

 pixels.clear();

 pixels.show();

 delay(1000);

}

Adapting Sketches to M0 & M4

The ATSAMD21 and 51 are very nice little chips, but fairly new as Arduino-compatible

cores go. Most sketches & libraries will work but here’s a collection of things we

noticed.

The notes below cover a range of Adafruit M0 and M4 boards, but not every rule will

apply to every board (e.g. Trinket and Gemma M0 do not have ARef, so you can skip

the Analog References note!).

Analog References

If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is

analogReference(AR_EXTERNAL) (it's AR_EXTERNAL not EXTERNAL)

©Adafruit Industries Page 206 of 228

https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-installation

Pin Outputs & Pullups

The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)

digitalWrite(pin, HIGH)

This is because the pullup-selection register on 8-bit AVR chips is the same as the

output-selection register.

For M0 & M4 boards, you can't do this anymore! Instead, use:

pinMode(pin, INPUT_PULLUP)

Code written this way still has the benefit of being backwards compatible with AVR.

You don’t need separate versions for the different board types.

Serial vs SerialUSB

99.9% of your existing Arduino sketches use Serial.print to debug and give output. For

the Official Arduino SAMD/M0 core, this goes to the Serial5 port, which isn't exposed

on the Feather. The USB port for the Official Arduino M0 core is called SerialUSB

instead.

In the Adafruit M0/M4 Core, we fixed it so that Serial goes to USB so it will

automatically work just fine.

However, on the off chance you are using the official Arduino SAMD core and not the

Adafruit version (which really, we recommend you use our version because it’s been

tuned to our boards), and you want your Serial prints and reads to use the USB port,

use SerialUSB instead of Serial in your sketch.

If you have existing sketches and code and you want them to work with the M0

without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)

 // Required for Serial on Zero based boards

 #define Serial SERIAL_PORT_USBVIRTUAL

#endif

©Adafruit Industries Page 207 of 228

right above the first function definition in your code. For example:

AnalogWrite / PWM on Feather/Metro M0

After looking through the SAMD21 datasheet, we've found that some of the options

listed in the multiplexer table don't exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The

Timer/Counter (TC) and Timer/Counter for Control Applications (TCC). Each SAMD21

has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output

channels. Either channel can be enabled and disabled, and either channel can be

inverted. The pins connected to a TC instance can output identical versions of the

same PWM waveform, or complementary waveforms.

Each TCC instance has a single count register, but multiple compare registers and

output channels. There are options for different kinds of waveform, interleaved

switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two

'waveform output' (WO) channels, and three TCC instances with eight WO channels:

TC[0-4],WO[0-1]

TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

•

•

©Adafruit Industries Page 208 of 228

The SAMD21G used in the Feather M0 only has three TC instances with two output

channels, and three TCC instances with eight output channels:

TC[3-5],WO[0-1]

TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't

do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as

the SPI, I2C, and UART pins keep their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13

Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the

following pins:

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range

On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully

HIGH. On the ARM cortex, it will set it to be 255/256 so there will be very slim but

still-existing pulses-to-0V. If you need the pin to be fully on, add test code that checks

if you are trying to analogWrite(pin, 255) and, instead, does a

digitalWrite(pin, HIGH)

analogWrite() DAC on A0

If you are trying to use analogWrite() to control the DAC output on A0, make sure

you do not have a line that sets the pin to output. Remove: pinMode(A0, OUTPUT) .

•

•

•

•

•

•

©Adafruit Industries Page 209 of 228

Missing header files

There might be code that uses libraries that are not supported by the M0 core. For

example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory

 #include <util/delay.h>

 ^

compilation terminated.

Error compiling.

In which case you can simply locate where the line is (the error will give you the file

name and line number) and 'wrap it' with #ifdef's so it looks like:

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !

defined(ESP8266) && !defined(ARDUINO_ARCH_STM32F2)

 #include <util/delay.h>

#endif

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching

For most other AVRs, clicking reset while plugged into USB will launch the bootloader

manually, the bootloader will time out after a few seconds. For the M0/M4, you'll need

to double click the button. You will see a pulsing red LED to let you know you're in

bootloader mode. Once in that mode, it wont time out! Click reset again if you want to

go back to launching code.

Aligned Memory Access

This is a little less likely to happen to you but it happened to me! If you're used to 8-

bit platforms, you can do this nice thing where you can typecast variables around. e.g.

©Adafruit Industries Page 210 of 228

uint8_t mybuffer[4];

float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer

might not be aligned to a 2 or 4-byte boundary. The ARM Cortex-M0 can only directly

access data on 16-bit boundaries (every 2 or 4 bytes). Trying to access an odd-

boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU.

Thankfully, there's an easy work around ... just use memcpy!

uint8_t mybuffer[4];

float f;

memcpy(&f, mybuffer, 4)

Floating Point Conversion

Like the AVR Arduinos, the M0 library does not have full support for converting

floating point numbers to ASCII strings. Functions like sprintf will not convert floating

point. Fortunately, the standard AVR-LIBC library includes the dtostrf function which

can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some

references to using #include <avr/dtostrf.h> to get dtostrf in your code. And while it

will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in

your code:

http://forum.arduino.cc/index.php?topic=368720.0 ()

How Much RAM Available?

The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some

reason. You can do so with this handy function:

extern "C" char *sbrk(int i);

int FreeRam () {

 char stack_dummy = 0;

 return &stack_dummy - sbrk(0);

}

©Adafruit Industries Page 211 of 228

http://forum.arduino.cc/index.php?topic=368720.0

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 ()

for the tip!

Storing data in FLASH

If you're used to AVR, you've probably used PROGMEM to let the compiler know

you'd like to put a variable or string in flash memory to save on RAM. On the ARM, its

a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the

compiler will automatically read from FLASH so you dont need special progmem-

knowledgeable functions.

You can verify where data is stored by printing out the address:

Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000

and $3FFFF Then it is in FLASH

Pretty-Printing out registers

There's a lot of registers on the SAMD21, and you often are going through ASF or

another framework to get to them. So having a way to see exactly what's going on is

handy. This library from drewfish will help a ton!

https://github.com/drewfish/arduino-ZeroRegs ()

M4 Performance Options

As of version 1.4.0 of the Adafruit SAMD Boards package in the Arduino Boards

Manager, some options are available to wring extra performance out of M4-based

devices. These are in the Tools menu.

©Adafruit Industries Page 212 of 228

http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879
https://github.com/drewfish/arduino-ZeroRegs

All of these performance tweaks involve a degree of uncertainty. There’s no

guarantee of improved performance in any given project, and some may even be

detrimental, failing to work in part or in whole. If you encounter trouble, select the

default performance settings and re-upload.

Here’s what you get and some issues you might encounter…

CPU Speed (overclocking)

This option lets you adjust the microcontroller core clock…the speed at which it

processes instructions…beyond the official datasheet specifications.

Manufacturers often rate speeds conservatively because such devices are marketed

for harsh industrial environments…if a system crashes, someone could lose a limb or

worse. But most creative tasks are less critical and operate in more comfortable

settings, and we can push things a bit if we want more speed.

There is a small but nonzero chance of code locking up or failing to run entirely. If this

happens, try dialing back the speed by one notch and re-upload, see if it’s more

stable.

Much more likely, some code or libraries may not play well with the nonstandard CPU

speed. For example, currently the NeoPixel library assumes a 120 MHz CPU speed

and won’t issue the correct data at other settings (this will be worked on). Other

libraries may exhibit similar problems, usually anything that strictly depends on CPU

timing…you might encounter problems with audio- or servo-related code depending

how it’s written. If you encounter such code or libraries, set the CPU speed to the

default 120 MHz and re-upload.

©Adafruit Industries Page 213 of 228

Optimize

There’s usually more than one way to solve a problem, some more resource-intensive

than others. Since Arduino got its start on resource-limited AVR microcontrollers, the

C++ compiler has always aimed for the smallest compiled program size. The

“Optimize” menu gives some choices for the compiler to take different and often

faster approaches, at the expense of slightly larger program size…with the huge flash

memory capacity of M4 devices, that’s rarely a problem now.

The “Small” setting will compile your code like it always has in the past, aiming for the

smallest compiled program size.

The “Fast” setting invokes various speed optimizations. The resulting program should

produce the same results, is slightly larger, and usually (but not always) noticably

faster. It’s worth a shot!

“Here be dragons” invokes some more intensive optimizations…code will be larger

still, faster still, but there’s a possibility these optimizations could cause unexpected

behaviors. Some code may not work the same as before. Hence the name. Maybe

you’ll discover treasure here, or maybe you’ll sail right off the edge of the world.

Most code and libraries will continue to function regardless of the optimizer settings.

If you do encounter problems, dial it back one notch and re-upload.

Cache

This option allows a small collection of instructions and data to be accessed more

quickly than from flash memory, boosting performance. It’s enabled by default and

should work fine with all code and libraries. But if you encounter some esoteric

situation, the cache can be disabled, then recompile and upload.

Max SPI and Max QSPI

These should probably be left at their defaults. They’re present mostly for our own

experiments and can cause serious headaches.

Max SPI determines the clock source for the M4’s SPI peripherals. Under normal

circumstances this allows transfers up to 24 MHz, and should usually be left at that

setting. But…if you’re using write-only SPI devices (such as TFT or OLED displays), this

option lets you drive them faster (we’ve successfully used 60 MHz with some TFT

©Adafruit Industries Page 214 of 228

screens). The caveat is, if using any read/write devices (such as an SD card), this will

not work at all…SPI reads absolutely max out at the default 24 MHz setting, and

anything else will fail. Write = OK. Read = FAIL. This is true even if your code is using a

lower bitrate setting…just having the different clock source prevents SPI reads.

Max QSPI does similarly for the extra flash storage on M4 “Express” boards. Very few

Arduino sketches access this storage at all, let alone in a bandwidth-constrained

context, so this will benefit next to nobody. Additionally, due to the way clock dividers

are selected, this will only provide some benefit when certain “CPU Speed” settings

are active. Our PyPortal Animated GIF Display () runs marginally better with it, if using

the QSPI flash.

Enabling the Buck Converter on some M4

Boards

If you want to reduce power draw, some of our boards have an inductor so you can

use the 1.8V buck converter instead of the built in linear regulator. If the board does

have an inductor (see the schematic) you can add the line SUPC->VREG.bit.SEL =

1; to your code to switch to it. Note it will make ADC/DAC reads a bit noisier so we

don't use it by default. You'll save ~4mA ().

UF2 Bootloader Details

Adafruit SAMD21 (M0) and SAMD51 (M4) boards feature an improved bootloader that

makes it easier than ever to flash different code onto the microcontroller. This

bootloader makes it easy to switch between Microsoft MakeCode, CircuitPython and

Arduino.

Instead of needing drivers or a separate program for flashing (say, bossac , jlink

or avrdude), one can simply drag a file onto a removable drive.

The format of the file is a little special. Due to 'operating system woes' you cannot just

drag a binary or hex file (trust us, we tried it, it isn't cross-platform compatible).

Instead, the format of the file has extra information to help the bootloader know

where the data goes. The format is called UF2 (USB Flashing Format). Microsoft

MakeCode generates UF2s for flashing and CircuitPython releases are also available

as UF2. You can also create your own UF2s from binary files using uf2tool, available

This is an information page for advanced users who are curious how we get code

from your computer into your Express board!

©Adafruit Industries Page 215 of 228

https://learn.adafruit.com/pyportal-animated-gif-display
https://github.com/adafruit/ArduinoCore-samd/issues/128
https://github.com/Microsoft/uf2

here. ()

The bootloader is also BOSSA compatible, so it can be used with the Arduino IDE

which expects a BOSSA bootloader on ATSAMD-based boards

For more information about UF2, you can read a bunch more at the MakeCode blog (),

then check out the UF2 file format specification. ()

Visit Adafruit's fork of the Microsoft UF2-samd bootloader GitHub repository () for

source code and releases of pre-built bootloaders on CircuitPython.org ().

Entering Bootloader Mode

The first step to loading new code onto your board is triggering the bootloader. It is

easily done by double tapping the reset button. Once the bootloader is active you will

see the small red LED fade in and out and a new drive will appear on your computer

with a name ending in BOOT. For example, feathers show up as FEATHERBOOT,

while the new CircuitPlayground shows up as CPLAYBOOT, Trinket M0 will show up

as TRINKETBOOT, and Gemma M0 will show up as GEMMABOOT

The bootloader is not needed when changing your CircuitPython code. Its only

needed when upgrading the CircuitPython core or changing between

CircuitPython, Arduino and Microsoft MakeCode.

©Adafruit Industries Page 216 of 228

https://github.com/Microsoft/uf2
https://makecode.com/blog/one-chip-to-flash-them-all
https://github.com/Microsoft/uf2
https://github.com/adafruit/uf2-samd21
https://circuitpython.org/downloads

Furthermore, when the bootloader is active, it will change the color of one or more

onboard neopixels to indicate the connection status, red for disconnected and green

for connected. If the board is plugged in but still showing that its disconnected, try a

different USB cable. Some cables only provide power with no communication.

For example, here is a Feather M0 Express running a colorful Neopixel swirl. When

the reset button is double clicked (about half second between each click) the

NeoPixel will stay green to let you know the bootloader is active. When the reset

button is clicked once, the 'user program' (NeoPixel color swirl) restarts.

If the bootloader couldn't start, you will get a red NeoPixel LED.

That could mean that your USB cable is no good, it isn't connected to a computer, or

maybe the drivers could not enumerate. Try a new USB cable first. Then try another

port on your computer!

©Adafruit Industries Page 217 of 228

Once the bootloader is running, check your computer. You should see a USB Disk

drive...

Once the bootloader is successfully connected you can open the drive and browse

the virtual filesystem. This isn't the same filesystem as you use with CircuitPython or

Arduino. It should have three files:

 CURRENT.UF2 - The current contents of the microcontroller flash.

 INDEX.HTM - Links to Microsoft MakeCode.

 INFO_UF2.TXT - Includes bootloader version info. Please include it on bug

reports.

•

•

•

©Adafruit Industries Page 218 of 228

Using the Mass Storage Bootloader

To flash something new, simply drag any UF2 onto the drive. After the file is finished

copying, the bootloader will automatically restart. This usually causes a warning about

an unsafe eject of the drive. However, its not a problem. The bootloader knows when

everything is copied successfully.

You may get an alert from the OS that the file is being copied without it's properties.

You can just click Yes

©Adafruit Industries Page 219 of 228

You may also get get a complaint that the drive was ejected without warning. Don't

worry about this. The drive only ejects once the bootloader has verified and

completed the process of writing the new code

Using the BOSSA Bootloader

As mentioned before, the bootloader is also compatible with BOSSA, which is the

standard method of updating boards when in the Arduino IDE. It is a command-line

tool that can be used in any operating system. We won't cover the full use of the boss

ac tool, suffice to say it can do quite a bit! More information is available at ShumaTech

().

Windows 7 Drivers

If you are running Windows 7 (or, goodness, something earlier?) You will need a Serial

Port driver file. Windows 10 users do not need this so skip this step.

You can download our full driver package here:

Download Latest Adafruit Driver

Installer

Download and run the installer. We recommend just selecting all the serial port drivers

available (no harm to do so) and installing them.

©Adafruit Industries Page 220 of 228

http://www.shumatech.com/web/products/bossa
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

Verifying Serial Port in Device Manager

If you're running Windows, its a good idea to verify the device showed up. Open your

Device Manager from the control panel and look under Ports (COM & LPT) for a

device called Feather M0 or Circuit Playground or whatever!

If you see something like this, it means you did not install the drivers. Go back and try

again, then remove and re-plug the USB cable for your board

©Adafruit Industries Page 221 of 228

Running bossac on the command line

If you are using the Arduino IDE, this step is not required. But sometimes you want to

read/write custom binary files, say for loading CircuitPython or your own code. We

recommend using bossac v 1.7.0 (or greater), which has been tested. The Arduino

branch is most recommended ().

You can download the latest builds here. () The mingw32 version is for Windows, app

le-darwin for Mac OSX and various linux options for Linux. Once downloaded,

extract the files from the zip and open the command line to the directory with

bossac .

With bossac version 1.9 or later, you must give an --offset parameter on the

command line to specify where to start writing the firmware in flash memory. This

parameter was added in bossac 1.8.0 with a default of 0x2000 , but starting in 1.9, the

With bossac versions 1.9 or later, you must use the --offset parameter on the

command line, and it must have the correct value for your board.

©Adafruit Industries Page 222 of 228

https://github.com/shumatech/BOSSA/tree/arduino
https://github.com/shumatech/BOSSA/tree/arduino
https://github.com/shumatech/BOSSA/releases

default offset was changed to 0x0000 , which is not what you want in most cases. If

you omit the argument for bossac 1.9 or later, you will probably see a "Verify Failed"

error from bossac. Remember to change the option for -p or --port to match the

port on your Mac.

Replace the filename below with the name of your downloaded .bin : it will vary

based on your board!

Using bossac Versions 1.7.0, 1.8

There is no --offset parameter available. Use a command line like this:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-bo

ardname-version.bin

For example,

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-

feather_m0_express-3.0.0.bin

Using bossac Versions 1.9 or Later

For M0 boards, which have an 8kB bootloader, you must specify -offset=0x2000 ,

for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x2000 adafruit-

circuitpython-feather_m0_express-3.0.0.bin

For M4 boards, which have a 16kB bootloader, you must specify -offset=0x4000 ,

for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x4000 adafruit-

circuitpython-feather_m4_express-3.0.0.bin

This will e rase the chip, w rite the given file, v erify the write and R eset the board.

On Linux or MacOS you may need to run this command with sudo ./bossac ... , or

add yourself to the dialout group first.

©Adafruit Industries Page 223 of 228

Updating the bootloader

The UF2 bootloader is relatively new and while we've done a ton of testing, it may

contain bugs. Usually these bugs effect reliability rather than fully preventing the

bootloader from working. If the bootloader is flaky then you can try updating the

bootloader itself to potentially improve reliability.

If you're using MakeCode on a Mac, you need to make sure to upload the bootloader

to avoid a serious problem with newer versions of MacOS. See instructions and more

details here ().

In general, you shouldn't have to update the bootloader! If you do think you're having

bootloader related issues, please post in the forums or discord.

Updating the bootloader is as easy as flashing CircuitPython, Arduino or MakeCode.

Simply enter the bootloader as above and then drag the update bootloader uf2 file

below. This uf2 contains a program which will unlock the bootloader section, update

the bootloader, and re-lock it. It will overwrite your existing code such as

CircuitPython or Arduino so make sure everything is backed up!

After the file is copied over, the bootloader will be updated and appear again. The INF

O_UF2.TXT file should show the newer version number inside.

For example:

UF2 Bootloader v2.0.0-adafruit.5 SFHWRO

Model: Metro M0

Board-ID: SAMD21G18A-Metro-v0

Lastly, reload your code from Arduino or MakeCode or flash the latest CircuitPython

core ().

©Adafruit Industries Page 224 of 228

https://learn.adafruit.com/adafruit-circuit-playground-express/updating-the-bootloader
https://circuitpython.org/downloads
https://circuitpython.org/downloads

Below are the latest updaters for various boards. The latest versions can always be

found here (). Look for the update-bootloader... files, not the bootloader...

files.

Circuit Playground Express V3.7.0

update-bootloader.uf2

Feather M0 Express v3.7.0 update-

bootloader.uf2

Metro M0 Express v3.7.0 update-

bootloader.uf2

Gemma M0 v3.7.0 update-

bootloader.uf2

Trinket M0 v3.7.0 update-

bootloader.uf2

Itsy Bitsy M0 v3.7.0 update-

bootloader.uf2

Grand Central M4 v3.7.0 update-

bootloader.uf2

Latest version of update-

bootloader.uf2 for other boards.

Make sure you pick the right one.

Getting Rid of Windows Pop-ups

If you do a lot of development on Windows with the UF2 bootloader, you may get

annoyed by the constant "Hey you inserted a drive what do you want to do" pop-ups.

©Adafruit Industries Page 225 of 228

https://github.com/adafruit/uf2-samdx1/releases/latest
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-circuitplay_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-feather_m0_express-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-metro_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-gemma_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-trinket_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-itsybitsy_m0-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.7.0/update-bootloader-grandcentral_m4-v3.7.0.uf2
https://github.com/adafruit/uf2-samdx1/releases/latest

Go to the Control Panel. Click on the

Hardware and Sound header

Click on the Autoplay header

Uncheck the box at the top, labeled Use

Autoplay for all devices

Making your own UF2

Making your own UF2 is easy! All you need is a .bin file of a program you wish to flash

and the Python conversion script (). Make sure that your program was compiled to

start at 0x2000 (8k) for M0 boards or 0x4000 (16kB) for M4 boards. The bootloader

takes up the first 8kB (M0) or 16kB (M4). CircuitPython's linker script () is an example

on how to do that.

©Adafruit Industries Page 226 of 228

https://learn.adafruit.com//assets/41276
https://learn.adafruit.com//assets/41276
https://learn.adafruit.com//assets/41277
https://learn.adafruit.com//assets/41277
https://learn.adafruit.com//assets/41278
https://learn.adafruit.com//assets/41278
https://github.com/Microsoft/uf2/blob/master/utils/uf2conv.py
https://github.com/adafruit/circuitpython/blob/master/ports/atmel-samd/boards/samd21x18-bootloader.ld

Once you have a .bin file, you simply need to run the Python conversion script over it.

Here is an example from the directory with uf2conv.py. This command will produce a f

irmware.uf2 file in the same directory as the source firmware.bin. The uf2 can then be

flashed in the same way as above.

For programs with 0x2000 offset (default)

uf2conv.py -c -o build-circuitplayground_express/firmware.uf2 build-

circuitplayground_express/firmware.bin

For programs needing 0x4000 offset (M4 boards)

uf2conv.py -c -b 0x4000 -o build-metro_m4_express/firmware.uf2 build-

metro_M4_express/firmware.bin

Installing the bootloader on a fresh/bricked

board

If you somehow damaged your bootloader or maybe you have a new board, you can

use a JLink to re-install it.

Here's a Learn Guide explaining how to fix the bootloader on a variety of boards using

Atmel Studio ()

Here's a short writeup by turbinenreiter on how to do it for the Feather M4 (but

adaptable to other boards) ()

Downloads

Files

ATSAMD21 Datasheet ()

Webpage for the ATSAMD21E18 (main chip used) ()

EagleCAD files on GitHub ()

Fritzing object in the Adafruit Fritzing Library ()

3D models on GitHub ()

PDF for QT Py Board Diagram on GitHub ()

SVG for QT Py Board Diagram

•

•

•

•

•

•

©Adafruit Industries Page 227 of 228

https://learn.adafruit.com/how-to-program-samd-bootloaders
https://learn.adafruit.com/how-to-program-samd-bootloaders
https://forums.adafruit.com/viewtopic.php?f=57&t=142170&p=707151#p707151
https://forums.adafruit.com/viewtopic.php?f=57&t=142170&p=707151#p707151
https://cdn-learn.adafruit.com/assets/assets/000/044/363/original/samd21.pdf?1501106093
http://www.microchip.com/wwwproducts/en/ATSAMD21E18
https://github.com/adafruit/Adafruit-QT-Py-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20QT%20Py.fzpz
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4600%20QT%20Py
https://github.com/adafruit/Adafruit-QT-Py-PCB/blob/master/Adafruit%20QT%20Py%20SAMD21%20pinout.pdf
https://cdn-learn.adafruit.com/assets/assets/000/110/644/original/Adafruit_QT_Py_SAMD21_pinout.svg?1649443290

Schematic & Fabrication Print

©Adafruit Industries Page 228 of 228

	Adafruit QT Py SAMD21
	Table of Contents
	Overview
	Update the UF2 Bootloader
	Pinouts
	About STEMMA QT
	What is CircuitPython?
	CircuitPython
	Installing the Mu Editor
	Creating and Editing Code
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	Frequently Asked Questions
	Troubleshooting
	"Uninstalling" CircuitPython
	Welcome to the Community!
	CircuitPython Essentials
	CircuitPython Pins and Modules
	CircuitPython Built-Ins
	CircuitPython Digital In & Out
	CircuitPython Analog In
	CircuitPython Analog Out
	CircuitPython Audio Out
	CircuitPython PWM
	CircuitPython Servo
	CircuitPython Cap Touch
	CircuitPython Internal RGB LED
	CircuitPython NeoPixel
	CircuitPython DotStar
	CircuitPython UART Serial
	CircuitPython I2C
	CircuitPython HID Keyboard and Mouse
	CircuitPython Storage
	CircuitPython CPU Temp
	CircuitPython Expectations
	Arduino IDE Setup
	Using with Arduino IDE
	NeoPixel Blink
	Adapting Sketches to M0 & M4
	UF2 Bootloader Details
	Downloads

	Overview
	Update the UF2 Bootloader
	Check your Bootloader Version
	Download the Bootloader Updater
	Update and Check the Version

	Pinouts
	Power Pins
	Input/Output Pins
	General Purpose / Analog Inputs
	I2C Pins
	Hardware Serial Pins
	SPI Pins
	Onboard Neopixel pins
	Capacitive touch pins
	Analog output pin
	Analog input pins
	PWM output pins
	I2S pins
	SWD Debug Pins
	Reverse Side SPI FLASH

	About STEMMA QT
	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	CircuitPython
	Set up CircuitPython Quick Start!

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?

	macOS Sonoma 14.x: Disk Errors Writing to CIRCUITPY
	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	macOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	"Uninstalling" CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Essentials
	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	CircuitPython Built-Ins
	Thing That Are Built In and Work
	Flow Control
	Math
	Tuples, Lists, Arrays, and Dictionaries
	Classes, Objects and Functions
	Lambdas
	Random Numbers

	CircuitPython Digital In & Out
	Find the pins!
	Read the Docs

	CircuitPython Analog In
	Creating the analog input
	get_voltage Helper
	Main Loop
	Changing It Up
	Wire it up

	Reading Analog Pin Values
	CircuitPython Analog Out
	Creating an analog output
	Setting the analog output
	Main Loop
	Find the pin

	CircuitPython Audio Out
	Play a Tone
	Play a Wave File
	Wire It Up

	CircuitPython PWM
	PWM with Fixed Frequency
	Create a PWM Output
	Main Loop
	PWM Output with Variable Frequency
	Installing Project Code
	Wire it up
	Where's My PWM?

	CircuitPython Servo
	Servo Wiring
	Standard Servo Code
	Continuous Servo Code

	CircuitPython Cap Touch
	Create the Touch Input
	Main Loop
	Find the Pin(s)

	CircuitPython Internal RGB LED
	Create the LED
	Brightness
	Main Loop
	Making Rainbows (Because Who Doesn't Love 'Em!)
	Circuit Playground Express Rainbow

	CircuitPython NeoPixel
	Wiring It Up
	The Code
	Create the LED
	NeoPixel Helpers
	Main Loop
	NeoPixel RGBW
	The Code
	Read the Docs

	CircuitPython DotStar
	Wire It Up
	The Code
	Create the LED
	DotStar Helpers
	Main Loop
	Is it SPI?
	Read the Docs

	CircuitPython UART Serial
	The Code
	Wire It Up
	Where's my UART?
	Trinket M0: Create UART before I2C

	CircuitPython I2C
	Wire It Up
	Find Your Sensor
	I2C Sensor Data
	Installing Project Code
	Where's my I2C?

	CircuitPython HID Keyboard and Mouse
	CircuitPython Keyboard Emulator
	Create the Objects and Variables
	The Main Loop
	Non-US Keyboard Layouts

	CircuitPython Mouse Emulator
	Create the Objects and Variables
	CircuitPython HID Mouse Helpers
	Main Loop

	CircuitPython Storage
	boot.py
	Installing Project Code
	Logging the Temperature

	CircuitPython CPU Temp
	CircuitPython Expectations
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	Switching Between CircuitPython and Arduino
	The Difference Between Express And Non-Express Boards
	Non-Express Boards: Gemma, Trinket, and QT Py
	Small Disk Space
	No Audio or NVM

	Differences Between CircuitPython and MicroPython
	Differences Between CircuitPython and Python
	Python Libraries
	Integers in CircuitPython
	Floating Point Numbers and Digits of Precision for Floats in CircuitPython
	Differences between MicroPython and Python

	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 & 8 Only)
	Blink
	Successful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	NeoPixel Blink
	Adapting Sketches to M0 & M4
	Analog References
	Pin Outputs & Pullups
	Serial vs SerialUSB
	AnalogWrite / PWM on Feather/Metro M0
	analogWrite() PWM range
	analogWrite() DAC on A0
	Missing header files
	Bootloader Launching
	Aligned Memory Access
	Floating Point Conversion
	How Much RAM Available?
	Storing data in FLASH
	Pretty-Printing out registers
	M4 Performance Options
	CPU Speed (overclocking)
	Optimize
	Cache
	Max SPI and Max QSPI

	Enabling the Buck Converter on some M4 Boards
	UF2 Bootloader Details
	Entering Bootloader Mode
	Using the Mass Storage Bootloader
	Using the BOSSA Bootloader
	Windows 7 Drivers
	Verifying Serial Port in Device Manager
	Running bossac on the command line
	Using bossac Versions 1.7.0, 1.8
	Using bossac Versions 1.9 or Later

	Updating the bootloader
	Getting Rid of Windows Pop-ups
	Making your own UF2
	Installing the bootloader on a fresh/bricked board
	Downloads
	Files
	Schematic & Fabrication Print

