

TMR6401

Single Channel TMR Magnetic Pattern Recognition Sensor

General Description


The TMR6401 is a type of single channel magnetic pattern recognition sensor with high sensitivity, high signal-to-noise ratio performance, it is used for detecting paper bills, bank notes and security documents with magnetic anti-counterfeiting consists. The TMR6401 consists of high sensitivity TMR magneto-resistance sensor, high-quality magnet and durable metal case.

Features and Benefits

- High sensitivity and excellent gap performances
- Output voltage is independent of scanning speed
- Differential output, high CMRR performance
- Single channel detection, 5mm detection width
- Downsizing appearance
- Simple structure for low cost solutions

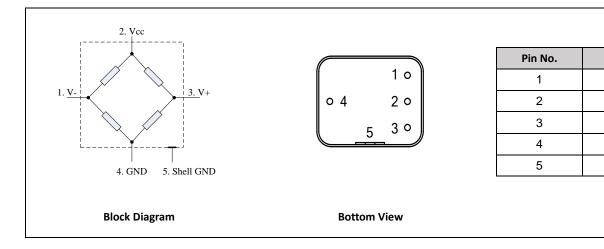
Applications

- Bill counter and validator
- Bill sorter
- Magnetic ink document reader
- Automatic vending machines and validator modules

TMR6401

Symbol

V-


 V_{CC}

V+

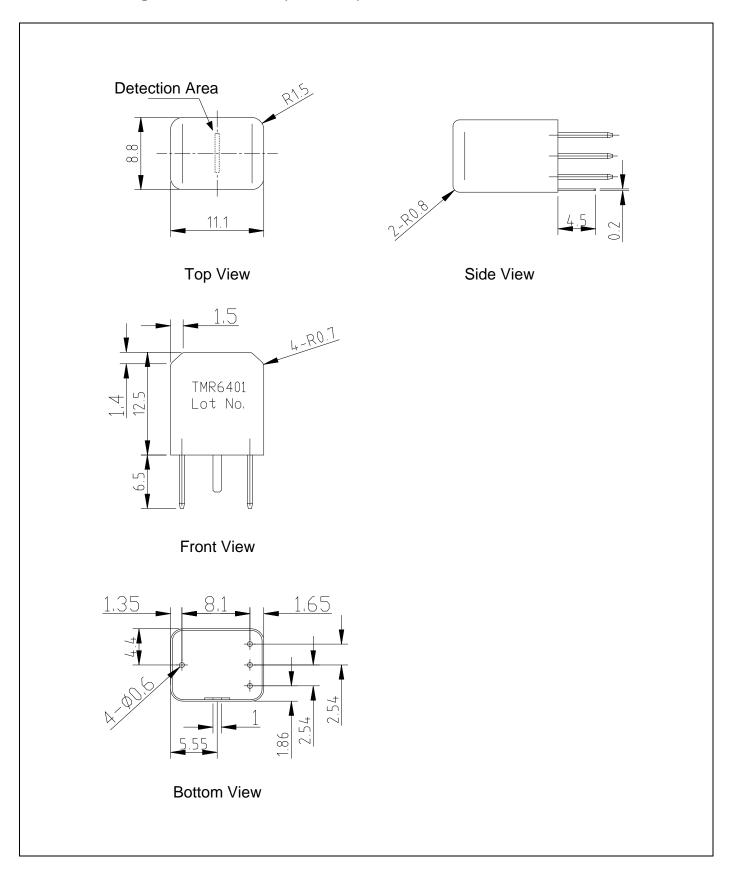
GND

Shell GND

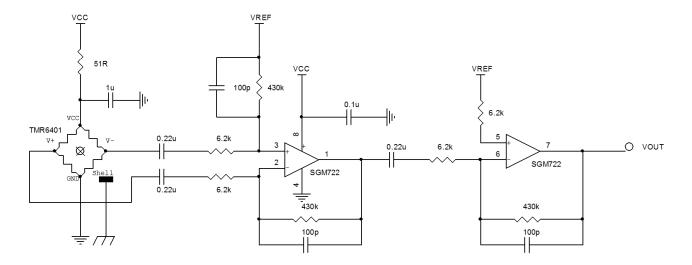
Schematic & Pin Configuration

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Maximum Supply Voltage	Vcc	5.5	V	
Operating Temperature	TA	-20 ~ 65	°C	
Storage Temperature	T _{stg}	-30 ~ 85	°C	
Operating Humidity	HMD	10 ~ 90 (no dew)	%RH	
ESD (HBM)	V _{НВМ}	2000	V	


Electrical Property (Vcc=5V, Ta=25°C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Sensitivity	S ⁽¹⁾			TBD		V
Resistance	R	No external magnetic field	1		5	kOhm
Output Offset Voltage	V _{offset}			2.5		V
Noise	V _{nw} ⁽²⁾			50		μ∨рр
Surface Magnetic Field	В	On sensing surface(S pole)		800		G
Detecting Width	W			5		mm
Resolution	Т			0.475		mm


Notes:

- (1) According to the MultiDimension sensitivity measurement.
- (2) The amplifier's gain is 80dB@1kHz, no external magnetic field applied, measure the peak-to-peak voltage Vpp, then Vnw = Vpp/10000.

Outline Drawing and Dimensions (Unit: mm)

Recommended Application Circuit

Notes:

Shell GND pin should be connected to the shielding ground.

MultiDimension Technology Co., Ltd.

Address: No.7 Guangdong Road, Zhangjiagang Free Trade Zone, Jiangsu, 215634, China

Web: www.dowaytech.com/en
Email: info@dowaytech.com

The information provided herein by MultiDimension Technology Co., Ltd. (hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimension reserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimension does not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimension for any damages resulting from such applications.