

半桥 LLC 谐振型开关电源控制器

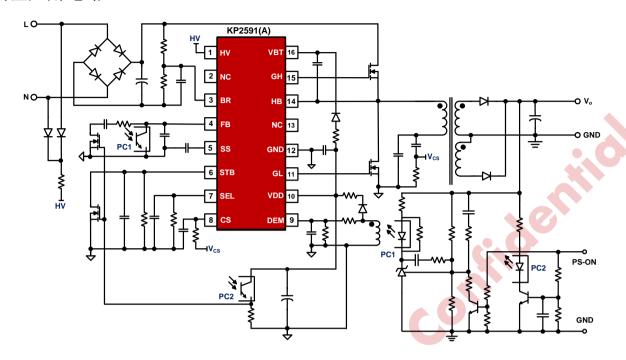
主要特点

- 高精度 VCO 控制
- 支持最高频率 350kHz
- 集成 650V 半桥驱动
- 集成高压启动功能
- 自适应死区时间控制
- 可配置软启动功能
- 集成 AC 掉电检测与 X 电容放电功能
- 支持无 PFC 的设计应用
- 可配置正常工作模式或低待机模式
- 集成完备的保护功能:
 - VDD 过压/欠压保护 (VDD OVP/UVLO)
 - VBT 欠压保护 (VBT UVP)
 - HV 管脚输入欠压保护 (HV BOP)
 - BR 管脚可配置输入欠压保护 (BR BOP)
 - AC 过压保护 (LOVP)
 - 过载保护 (OLP)
 - 谐振腔电流逐周期过流保护 (CBC OCP)
 - 输出过流保护 (OCP)
 - 容性区保护
 - SEL 管脚开短路保护
 - 过热保护 (OTP)
- 封装类型 SOP-16

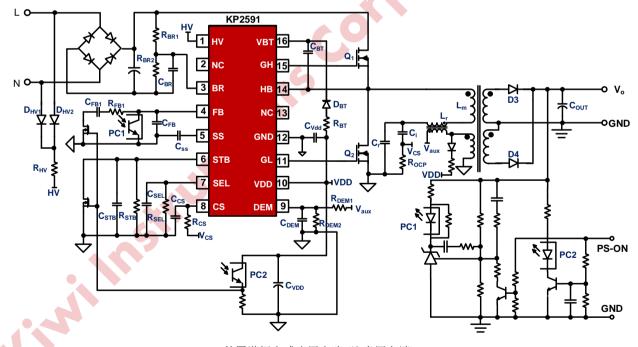
典型应用

- 电视板卡电源
- LED 应用
- 适配器电源

产品描述


KP2591(A) 是一款基于半桥型 LLC 谐振变换器的谐振型开关电源控制器。芯片集成了高压启动,AC 掉电检测以及 X 电容放电功能,可以满足快速启动和超低待机的要求。

KP2591(A) 集成半桥驱动,可直接输出 50% 占空比的互补驱动。芯片内置高精度 VCO 振荡器,最高工作频率达到 350kHz。芯片集成自适应死区控制的功能,确保功率开关管零电压开通 (ZVS),提高了系统效率;同时芯片集成了容性区保护功能以避免桥臂直通和硬开关,提高了系统的可靠性。此外,芯片可通过外部信号控制进入低待机模式,降低了系统的待机损耗。


KP2591(A) 集成有完备的保护功能,包括: VDD 过压/欠压保护 (VDD OVP / UVLO)、VBT 欠压保护 (VBT UVP)、AC 过压及输入欠压保护 (LOVP & HV / BR BOP)、过载保护 (OLP)、谐振腔过流保护 (CBC OCP / SOCP)、输出过流保护 (OCP)、容性 区保护、SEL 管脚开短路保护,过热保护 (OTP)。

典型应用电路

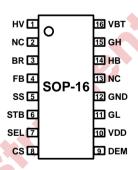
集成谐振电感应用电路

外置谐振电感应用电路 (注意同名端)

订购信息

订购型号(1)	封装形式	环保等级	湿气敏感性 等级	包装形式	标识码
KP2591SGA	SOP-16	无卤	3	编带盘装,3000颗/卷	KP2591SG
KP2591ASGA	SOP-16	无卤	3	编带盘装,3000颗/卷	KP2591ASG

产品标记

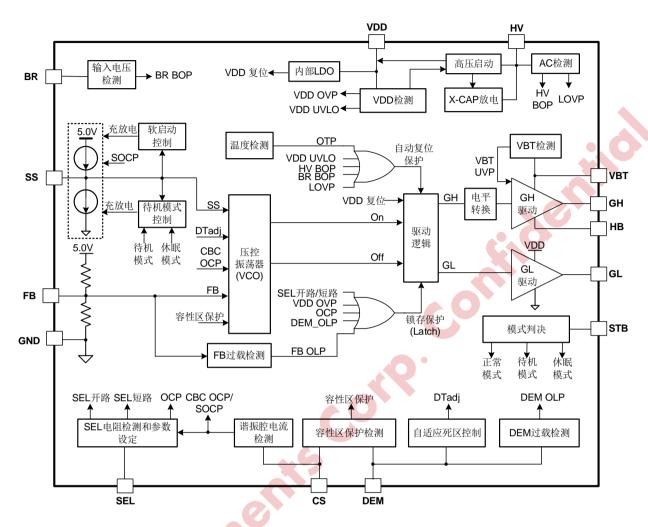

KP2591SG
标识码

XXXXXX
晶圆批次

YWWZZF
Y: 年份代码 WW: 周代码
ZZ: 流水码 F: 内控码(2)

(2) 晶圆批次、年份代码、周代码、流水码、内控码实际内容为数字或字母

管脚定义


管脚	名称	类型 ⁽³⁾	描述
1	HV	I	高压启动管脚,同时具备 AC 过压/欠压保护功能、AC 掉电检测及 X 电容放电功能
2	NC	-	悬空管脚
3	BR	I/O	可配置输入欠压管脚
4	FB	I/O	反馈管脚,闭环控制时连接于光电耦合器,此脚位电压决定了 VCO 振荡频率、FB 管脚过载保护和打嗝模式。
5	SS	I/O	软启动配置管脚,同时与 FB 管脚共同决定低待机模式的进入和退出
6	STB	I/O	低待机控制管脚,控制 LLC 系统进入两种状态:正常工作模式、待机模式
7	SEL	I/O	工作参数配置管脚,同时可用于配置输出过流保护延时时间以及外部 Latch 保护信号的触发管脚

8			
ı.	CS	I	谐振腔电流检测管脚,集成过流保护功能,并与 DEM 管脚配合实现容性区保护功能
9	DEM	I	辅助绕组电压检测管脚,集成自适应死区控制检测功能和过载保护功能
10	VDD	Р	芯片低压侧供电管脚
11	GL	0	半桥低压侧驱动输出管脚
12	GND	Р	芯片控制地和低压侧驱动参考地
13	NC	-	悬空管脚
14	НВ	Р	连接半桥桥臂中点,芯片高压侧参考地
15	GH	0	半桥高压侧驱动输出管脚
16	VBT	Р	芯片高压侧供电管脚
		5)	

内部功能框图

保护功能

保护功能	KP2591	KP2591A	保护功能	KP2591	KP2591A
SEL 管脚开路保护	Latch	Latch	VDD 过压保护 (VDD OVP)	Latch	自动重启
SEL 管脚短路保护 (外部信号保护)	Latch	自动重启	输入欠压保护 (HV/BR BOP)	自动重启	自动重启
输出过流 <mark>保</mark> 护 (OCP)	Latch	自动重启	输入过压保护 (LOVP)	自动重启	自动重启
FB 过载保护 (FB OLP)	Latch	自动重启	VDD 欠压保护 (VDD UVLO)	自动重启	自动重启
DEM 过载保护 (DEM OLP)	Latch	自动重启	过热保护 (OTP)	自动重启	自动重启
软过流保护 (SOCP)	1	/			_

极限参数(4)

参数	数值	单位
VBT 管脚电压范围	-0.3 ~ 650	V
HB 管脚电压范围	V _{BT} -30 ~ V _{BT} +0.3	V
高压侧供电电压范围 (V _{BT} -V _{HB})	-0.3 ~ 30	V
GH 管脚电压范围	HB-0.3V to HB+16	VO
VDD 管脚电压范围	-0.3 ~ 30	V
GL 管脚电压范围	-0.3 ~ 16	V
HB 管脚电压变化斜率允许范围	-50 ~ 50	kV/µs
HV 管脚电压范围	-0.3 ~ 650	V
HV 管脚输入电流	12	mA
BR/FB/SS/STB/SEL 管脚电压范围	-0.3 ~ 6	V
CS/DEM 管脚电压范围	-6 ~ 6	V
θ _{JA} , 封装热阻结到环境 (SOP16) ⁽⁵⁾	120	°C/W
最高芯片工作结温	150	°C
储藏温度范围	-65 ~ 150	°C
焊接温度 (10 s)	260	°C

- **(4)** 超出列表中极限参数可能会对芯片造成永久性损坏。极限参数仅用作标识应力等级,在超出推荐工作条件的情况下芯片可能无法正常工作。过度暴露在超出推荐工作条件下,可能会影响芯片的可靠性。
- (5) 最大耗散功率 PDmax=(TJmax-TA)/θJA., 环境温度升高时最大耗散功率会随之降低。

防静电等级

参数		数值	单位
V	ESD 人体模型 (HBM) ⁽⁶⁾	±4	kV
Vesd	ESD 充电器模型 (CDM) ⁽⁷⁾	±1	kV

- (6) JEDEC 文件 JEP155 指出,500-V HBM 满足使用标准 ESD 控制流程的安全制造要求。
- (7) JEDEC 文件 JEP157 指出, 250-V CDM 满足使用标准 ESD 控制流程的安全制造要求。

推荐工作条件

参数	数值	单位
HB 管脚电压范围	-5 ~ 500	V
(V _{BT} -HB) 半桥上管供电电压范围	14 ~ 28	V
VBT 与 HB 管脚电容	1	μF
VDD 管脚电压范围	14 ~ 28	V
VDD 管脚供电电容	22 ~ 220	μF
VDD 管脚解耦电容	0.1	μF
HV 管脚电压范围	80 ~ 500	V
HV 管脚输入峰值电流	0 ~ 10	mA
HV 管脚电阻	2 ~ 40	kΩ
SS 管脚电容	10 ~ 47	nF
芯片工作结温	-40 ~ 125	°C

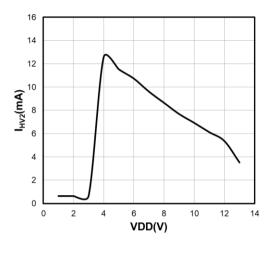
电气参数(TA = 25℃, VDD = 19V, 除非另有说明)

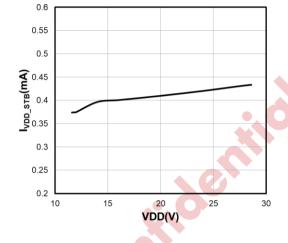
符号	参数	测试条件	最小	典型	最大	单位
高压启动供电	L (HV 管脚)	5				
I _{HV1}	高压启动供电电流	$V_{HV} = 100V, V_{DD} = 0V$	0.4	0.7	1.0	mA
I _{HV2}	高压启动供电电流	V _{HV} = 100V, V _{DD} = 6V	6	10	16	mA
I _{HV_LEAK}	HV 管脚漏电流	$V_{DD} = 19V, V_{HV} = 600V$		20	30	μΑ
V _{HV_ON}	高压开启电压	V _{HV} 上升		15	50	V
低压侧供电(VDD 管脚)					
V _{DD_ON}	VDD 启动电压阈值	V _{DD} 上升	12.4	13	13.6	V
V _{DD_OFF}	VDD 电压欠压保护阈值	VDD下降	8.5	9.0	9.5	V
VDD_POR	VDD 复位电压阈值	VDD下降	8.0	8.5	9.0	V
V _{DD_REG}	高压启动供电维持电压	V _{HV} = 100V, V _{DD} = 1µF, STB 悬空	10.4	11.2	12.1	V
I _{VDD_STB}	VDD静态工作电流	Vss=0V	0.2	0.35	0.5	mA
I _{VDD_38k}	V _{DD} 工作电流 @fs = 38kHz	V _{FB} =3.7V,C _{GL} =0.22nF	0.3	0.6	0.9	mA
I _{VDD_350k}	V _{DD} 工作电流 @fs = 350kHz	V _{FB} =0.3V,C _{GL} =0.22nF	1.2	2	3.2	mA
IVDD_LATCH	锁存状态 VDD 工作电流	SEL open	0.2	0.4	0.6	mA

V_{DD_OVP}	VDD 过压阈值	V _{DD} 上升	27.5	28.5	29.5	V
高压侧供电(VBT 管脚)			1		
V_{BT_ON}	高压侧驱动开启电压		7.8	8.8	9.8	V
V _{BT_OFF}	高压侧驱动停止电压		7.0	7.6	8.2	V
I _{ВТ_} SТВ	V _{BT} 静态电流	Vss=0V,V _{BT} =19V	25	45	65	μΑ
I _{BT_38k}	V _{вт} 工作电流 @fs = 38kHz	V _{ВТ} =19V, V _{FВ} = 3.7V, С _{GH} = 0.22nF	0.15	0.3	0.5	mA
I _{BT_350k}	V _{BT} 工作电流 @fs = 350kHz	V_{BT} =19V, V_{FB} = 0.3V, C_{GH} = 0.22nF	1.0	1.6	2.5	mA
SEL 电阻检测	则和 Latch 状态 (SEL 管脚)	, -:	•		2	
Isel	SEL 管脚电阻检测,流出电流		7.6	9.6	11.6	μΑ
T _{SEL_DET}	SEL 管脚电阻检测延迟 (8)			40		ms
VSEL_OPEN	SEL 管脚开路保护电压阈值	SEL open	4.1	4.5	4.9	V
V _{SEL_LATCH}	外部故障 Latch 触发阈值电压	Vsel下降	0.30	0.35	0.40	V
T _{SEL_LATCH}	外部故障 Latch 触发延迟 ⁽⁸⁾	٠٠.		300		μs
V _{OCP_OSCL}	SEL 管脚振荡器低电平 (8)			0.60		V
V _{OCP_OSCH}	SEL 管脚振荡器高电平 ⁽⁸⁾	C		0.80		V
I _{OCP_CH}	SEL 管脚振荡器充电电流	5	17	25	33	μΑ
AC 电压检测	和保护 (HV 管脚)					
V _{IN_LH}	低压 (LL) 切高压 (HL) 电压阈值	Vin上升	214	240	266	V
V _{IN_HL}	HL 切低压 LL 电压阈值	VIN下降	204	226	249	V
T _{HL_DELAY}	HL 切换到 LL 的检测延时时间 ⁽⁸⁾			26.0		ms
$V_{\text{HV_BO}}$	HV 管脚 BOP 进入电压			90		V
V _{HV_BI}	HV 管脚 BOP 退出电压			95		V
T _{BOP_DELAY}	HV 管脚 BOP 触发延时 (8)			110		ms
V _{LOVP_IN}	AC 过压保护进入阈值		475	525	575	V
V _{LOVP} _OUT	AC 过压保护退出阈值		450	500	550	V
TLOVP_DELAY	AC 过压保护触发延时 ⁽⁸⁾			10		μs
X-CAP 放电	功能 (HV 管脚)					
TACOFFDET	输入掉电检测延时时间(8)			56		ms
Ixdch	X-CAP 放电电流 ⁽⁸⁾	V _{HV} = 120V		2		mA

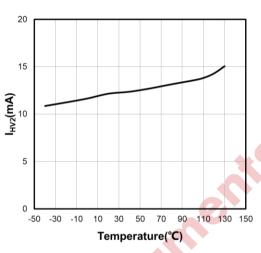
TxDCH X-CAP 放电周期(8) 2 DxDCH X-CAP 放电占空比(8) 75 振荡器 Don 半桥驱动占空比(8) 50 fs_MAX 最高振荡频率 VFB = 0.3V 300 350 fs_MIN 最低振荡频率 VFB = 3.7V 32 38 ton_MIN 驱动最小导通时间(8) 1.0 TRECOVERY 保护后重启延迟时间(8) 810 闭环反馈 (FB 管脚)	400 44 5.4	ms % % kHz kHz µs ms
振荡器 Don 半桥驱动占空比(8) 50 fs_MAX 最高振荡频率 VFB = 0.3V 300 350 fs_MIN 最低振荡频率 VFB = 3.7V 32 38 ton_MIN 驱动最小导通时间(8) 1.0 TRECOVERY 保护后重启延迟时间(8) 810	44	% kHz kHz µs ms
DON 半桥驱动占空比(8) 50 fs_MAX 最高振荡频率 VFB = 0.3V 300 350 fs_MIN 最低振荡频率 VFB = 3.7V 32 38 ton_MIN 驱动最小导通时间(8) 1.0 TRECOVERY 保护后重启延迟时间(8) 810	44	kHz kHz µs ms
fs_MAX 最高振荡频率 VFB = 0.3V 300 350 fs_MIN 最低振荡频率 VFB = 3.7V 32 38 ton_MIN 驱动最小导通时间 ⁽⁸⁾ 1.0 TRECOVERY 保护后重启延迟时间 ⁽⁸⁾ 810	44	kHz kHz µs ms
fs_MIN 最低振荡频率 VFB = 3.7V 32 38 ton_MIN 驱动最小导通时间 ⁽⁸⁾ 1.0 TRECOVERY 保护后重启延迟时间 ⁽⁸⁾ 810	44	kHz μs ms
ton_MIN 驱动最小导通时间 ⁽⁸⁾ 1.0 TRECOVERY 保护后重启延迟时间 ⁽⁸⁾ 810		μs ms
T _{RECOVERY} 保护后重启延迟时间 ⁽⁸⁾ 810	5.4	ms
	5.4	
闭环反馈 (FB 管脚)	5.4	
	5.4	
V _{FB_OPEN} FB 管脚开路电压 FB 开环 4.6 5	$\overline{}$	V
I _{FB_SHORT} FB 管脚短路电流 V _{FB} = 0V 130 190	250	μA
RFB FB 管脚上拉电阻 18 26	34	kΩ
V _{FB_BURSTOU} FB 电压打嗝退出阈值 0.25 0.3	0.35	V
VFB_BURSTIN FB 电压打嗝进入阈值 0.22 0.26	0.30	V
待机模式 (STB 管脚)		
I _{STB} STB 管脚流出电流 20 30	40	μA
V _{STB_H} 正常模式切换至待机模式阈值 STB 管脚电压上升 0.30 0.35	0.40	V
V _{STB_L}	0.35	V
TSTB_DELAY 特机模式检测延时时间 ⁽⁸⁾ 105		ms
V _{NOSWITCH_H} 驱动关闭进入电压阈值 STB 管脚电压上升 1.35 1.50	1.65	٧
VNOSWITCH_L 驱动关闭退出电压阈值 STB 管脚电压下降 1.25 1.40	1.55	٧
V _{STB_OPEN} STB 管脚开路电压 STB Open 4.5 5.0	5.5	V
软启动和待机模式控制 (SS 管脚)		
Iss_st 启动状态 SS 充电电流 启动 3.8 5.5	7.2	μA
Vss_on_st SS 管脚控制驱动开启阈值 启动 0.35 0.40	0.45	V
Vss_off_st SS 管脚控制驱动关闭阈值 启动 0.25 0.30	0.35	٧
V _{SS_END} SS 管脚软启动结束电压阈值 启动 3.6 4.0	4.4	V
Iss_ch_ll 低压输入待机模式 SS 充电电流 Vin = 100Vdc 30 44	58	μA
Iss_ch_hL 高压输入待机模式 SS 充电电流 Vin = 300Vdc 15 22	29	μΑ

氏压输入待机模式 SS 放电电流	Vin = 100Vdc	-116	-88	-60	μΑ
高压输入待机模式 SS 放电电流	Vin = 300Vdc	-58	-44	-30	μΑ
寺机模式,驱动使能 SS 阈值	LL 或 R _{SEL} = 200k / 330k	1.08	1.2	1.32	V
寺机模式,驱动使能 SS 阈值	HL 且 R _{SEL} = 56k / 100k	0.81	0.9	0.99	V
寺机模式,驱动停止 SS 迟滞		0.05	0.1	0.2	V
寺机模式,SS 充电 FB 阈值	FB 上升	4.0	4.3	4.6	V
寺机模式,SS 放电 FB 阈值	FB下降	3.8	4.1	4.4	V
蚀发 SOCP,SS 放电电流	(仅 KP2591A)	-116	-88	-60	uA
注(DEM 管脚)		6			
氐压侧开启最低 dV _{DEM} /dt ⁽⁸⁾		0.6			V/µs
高压侧开启最低 dV _{DEM} /dt ⁽⁸⁾		0.6			V/µs
最小死区时间 ⁽⁸⁾			450		ns
最大死区时间	٧٥.	15	20	25	μs
GH 管脚)					
GL 输出钳位电压 ⁽⁸⁾	C		12		V
GL 开通上拉电流能力 ⁽⁸⁾	S		0.6		Α
GL 关断下拉电流能力 (8)			-1.0		Α
GL 上升时间 ⁽⁸⁾	Cc = 1nF GL 电平从	4.0			
JL 工开时间 ⁶⁾	10% 上升至 90%	10	50	100	ns
GL 下降时间 (8)		10 5	35	70	ns ns
	10% 上升至 90% C _{GL} = 1nF, GL 电平从				
GL 下降时间 ⁽⁸⁾	10% 上升至 90% C _{GL} = 1nF, GL 电平从		35		ns
GL 下降时间 ⁽⁸⁾	10% 上升至 90% C _{GL} = 1nF, GL 电平从		35 12		ns V
GL 下降时间 ⁽⁸⁾ GH 输出钳位电压 ⁽⁸⁾ GH 开通上拉电流能力 ⁽⁸⁾	10% 上升至 90% C _{GL} = 1nF, GL 电平从		35 12 0.6		ns V A
GL 下降时间 ⁽⁸⁾ GH 输出钳位电压 ⁽⁸⁾ GH 开通上拉电流能力 ⁽⁸⁾ GH 关断下拉电流能力 ⁽⁸⁾	10% 上升至 90% C _{GL} = 1nF, GL 电平从 90% 下降至 10% C _{GH} = 1nF, GH 电平从	5	35 12 0.6 -1.5	70	ns V A
GL 下降时间 ⁽⁸⁾ GH 输出钳位电压 ⁽⁸⁾ GH 开通上拉电流能力 ⁽⁸⁾ GH 关断下拉电流能力 ⁽⁸⁾ GH 上升时间 ⁽⁸⁾	10% 上升至 90% CGL = 1nF, GL 电平从 90% 下降至 10% CGH = 1nF, GH 电平从 10% 上升至 90% CGH = 1nF, GH 电平从	10	35 12 0.6 -1.5 50	100	ns V A A ns
GL 下降时间 ⁽⁸⁾ GH 输出钳位电压 ⁽⁸⁾ GH 开通上拉电流能力 ⁽⁸⁾ GH 关断下拉电流能力 ⁽⁸⁾ GH 上升时间 ⁽⁸⁾ GH 下降时间 ⁽⁸⁾	10% 上升至 90% CGL = 1nF, GL 电平从 90% 下降至 10% CGH = 1nF, GH 电平从 10% 上升至 90% CGH = 1nF, GH 电平从	10	35 12 0.6 -1.5 50	100	ns V A A ns
GL 下降时间 ⁽⁸⁾ GH 输出钳位电压 ⁽⁸⁾ GH 开通上拉电流能力 ⁽⁸⁾ GH 关断下拉电流能力 ⁽⁸⁾ GH 上升时间 ⁽⁸⁾ GH 下降时间 ⁽⁸⁾ GH 下降时间 ⁽⁸⁾	10% 上升至 90% CGL = 1nF, GL 电平从 90% 下降至 10% CGH = 1nF, GH 电平从 10% 上升至 90% CGH = 1nF, GH 电平从 90% 下降至 10%	10 5	35 12 0.6 -1.5 50 35	70 100 70	ns V A A ns
	に	Kam	Tam	大死区时间 (B) 1.08 1.2 1.08 1.09 1.0	近年輸入待机模式 SS 放电电流

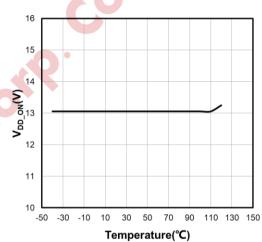

V _{BR_OPEN}	BR 管脚开路检测电压阈值		4.1	4.4	4.7	V
过流保护 (C:	S 管脚)					
V _{OCP_L1}	低压侧过流检测电压阈值	HL 或 R _{SEL} = 56k / 200k	-3.7	-3.5	-3.3	V
V _{OCP_L2}	低压侧过流检测电压阈值	LL 且 R _{SEL} = 100k / 330k	-4.3	-4.0	-3.7	V
V _{OCP_H1}	高压侧过流检测电压阈值	HL 或 R _{SEL} = 56k / 200k	3.3	3.5	3.7	V
V _{OCP_H2}	高压侧过流检测电压阈值	LL 且 R _{SEL} = 100k / 330k	3.7	4.0	4.3	V
V _{SOCP_L1}	SOCP 低压侧过流检测电压阈值 (8)	HL 或 R _{SEL} = 56k / 200k	V	OCP_L1+0	.2	V
Vsocp_l2	SOCP 低压侧过流检测电压阈值 (8)	LL <u>H</u> R _{SEL} = 100k / 330k	V	OCP_L2+0	.2	V
V _{SOCP_H1}	SOCP 高压侧过流检测电压阈值 (8)	HL 或 R _{SEL} = 56k / 200k	V	оср_н1-0	2	V
V _{SOCP_H2}	SOCP 高压侧过流检测电压阈值 (8)	LL 且 R _{SEL} = 100k / 330k	V	ОСР_Н2-0	.2	V
tocpl_delay	低压侧过流比较器关断延时时间 (8)	Vcs 阶 跃 输 入 (-2V 至 5V)至下管关断		300	500	ns
tocph_delay	高压侧过流比较器关断延时时间 (8)	Vcs 阶 跃 输 入 (2V至 - 5V)至上管关断		300	500	ns
t _{OCP_RST}	OCP 计时保护复位时间 ⁽⁸⁾			76		μs
tsocp_rst	SOCP 计时保护复位时间 ⁽⁸⁾	69	625	832	1040	μs
N _{OCP_SEL}	OCP/SOCP 触发时,SEL 管脚振荡周期数 ⁽⁸⁾	5		36		cycle
过载保护 (DI	EM 管脚,FB 管脚)					
t _{DEM_LEB}	DEM 过载检测消隐时间 ⁽⁸⁾		300	500	700	ns
VOLP_DEM1	DEM 过载检测电压阈值	HL 且 R _{SEL} = 100k / 330k	2.96	3.08	3.2	V
V _{OLP_DEM2}	DEM 过载检测电压阈值	LL 或 R _{SEL} = 56k / 200k	3.36	3.50	3.64	V
tolpdem_rst	DEM 过载检测复位时间 ⁽⁸⁾			100		μs
Tolp_dem	DEM 过载检测延时时间 ⁽⁸⁾		55	75	95	ms
Volp_fb	FB 过载电压阈值	V _{FB} 上升	4.1	4.3	4.5	V
VOLPFB_HYS	FB 过载阈值迟滞电压 ⁽⁸⁾			0.2		V
Tolp_fb	FB 过载检测延时时间 ⁽⁸⁾		120	150	180	ms
容性区保护(CS 管脚,DEM 管脚)					
VDEM_CAPL	容性区保护,低压侧强制关断, DEM 电压阈值 ⁽⁸⁾	DEM 上升	0.3	0.4	0.5	V
V_{DEM_CAPH}	容性区保护,高压侧强制关断, DEM 电压阈值 ⁽⁸⁾	DEM 下降	-0.3	-0.2	-0.1	V
Vcs_capl	容性区保护,低压侧强制关断, CS 管脚电压阈值 ⁽⁸⁾	CS 上升	-1.2	-1.0	-0.8	V

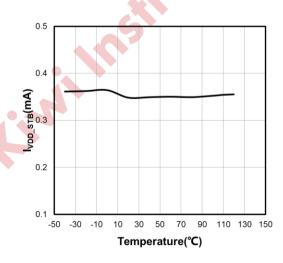


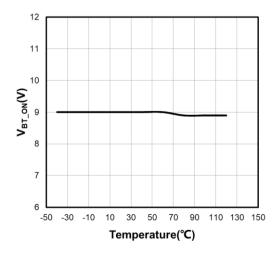
Vcs_caph						
	容性区保护,高压侧强制关断, CS 管脚电压阈值 ⁽⁸⁾	CS下降	0.8	1.0	1.2	V
tcs_capl	容性区保护,低压侧电流信号比较延迟 ⁽⁸⁾	V _{DEM} 方波脉冲 (-2V 至 2V), V _{CS} 阶跃信号 (- 2V to 2V)至GL关断		100	200	ns
tcs_caph	容性区保护,高压侧电流信号比较延迟 ⁽⁸⁾	V _{DEM} 脉冲方波 (2V 至 -2V), V _{Cs} 阶 跃 输 入 (2V至-2V)至GH关断		100	200	ns
过热保护功能	<u> </u>	, , , , , , , , , , , , , , , , , , , ,				
T _{SD}	过热关断 (8)			140		°C
T _{RC}	过热恢复 (8)			120		°C
		Coto.				



参数特性曲线

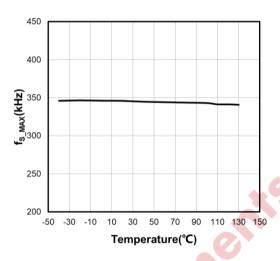




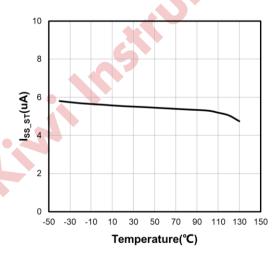

I_{VDD_STB} vs VDD

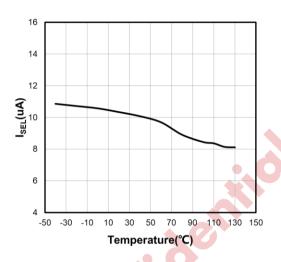
I_{HV2} vs Temperature

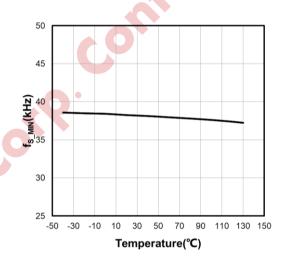
V_{DD_ON} vs Temperature

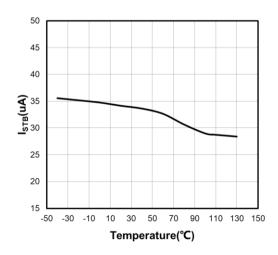

 $I_{\text{VDD_STB}} \ \text{vs} \ Temperature}$

V_{BT_ON} vs Temperature

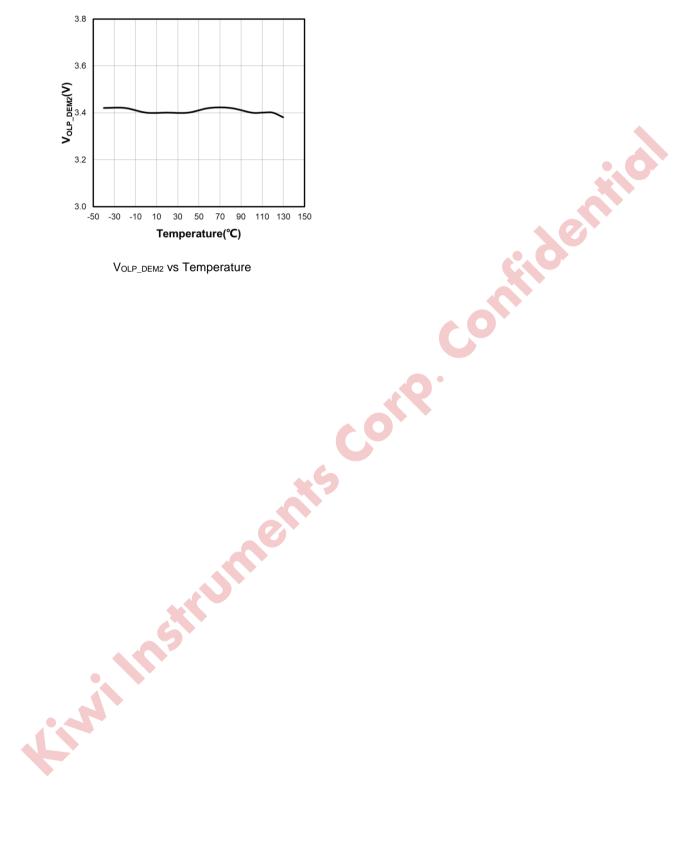



I_{BT_STB} vs Temperature


fs_MAX vs Temperature


Iss_st vs Temperature

I_{SEL} vs Temperature



fs_min vs Temperature

I_{STB} vs Temperature

Preliminary Datasheet 保密 DS KP2591(A) REV1.01S CN

功能描述

KP2591(A) 是一款基于半桥型 LLC 谐振变换器的 谐振型开关电源控制器。芯片集成了高压启动, AC 掉电检测以及 X 电容放电功能,可以满足快速启动和超低待机的要求。芯片集成半桥驱动,可直接输出 50% 占空比的互补驱动。KP2591(A) 内置高精度 VCO 振荡器,最高工作频率达到 350kHz。 芯片集成自适应死区控制功能,确保功率开关管零电压开通 (ZVS),提高了系统效率;同时芯片集成了容性区保护功能以避免桥臂直通和硬开关,提高了系统的可靠性。此外,芯片可通过外部信号控制进入低待机模式,降低了系统的待机损耗。

● 高压启动和供电

KP2591(A) 集成了高压启动模块。如图 1 所示,HV 管脚通过电阻 Rhv与高压二极管 Dhv1 和 Dhv2连接到 AC 输入线。启动时,芯片内部的高压启动模块使能,内部高压电流源给 VDD 管脚电容充电。

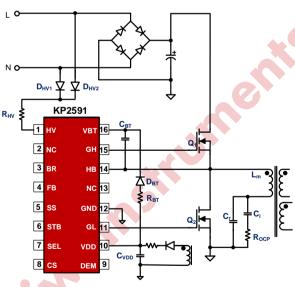


图 1 高压供电电路图

如图 2 所示。在启动过程中,当 VDD 低于 2V 时,高压供电电路对 VDD 管脚电容 (CvDD) 充电电流为 lhv1 (典型值 0.7mA),充电电流较小,主要是为了降低 VDD 管脚对地短路时的芯片功耗。当 VDD 管

脚电压超过 2V 时, 充电电流增加到 IHv2 (典型值 10mA), 以缩短启动时间。

当 VDD 管脚电压达到 VDD_REG (典型值 11.6V) 时,芯片内部电源开启,并在之后的 t3-t4 内 (如图 2 所示) 完成相关参数的初始化检测和锁存,如 SEL 管脚电阻检测,可配置 BOP 使能等。之后,VDD 管脚电容继续充电。

当 VDD 电压达到 VDD_ON (典型值 13.5V), 高压供电关闭,同时芯片开始输出驱动,并由电容 CVDD 继续向 VDD 管脚供电。当输出电压建立后,芯片供电由辅助绕组接管 (图 2 中 t6 时刻)。值得注意的是,芯片驱动输出需要在 BOP 不被触发的前提下。

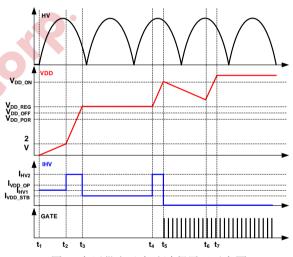


图 2 高压供电及启动过程原理示意图

芯片的高压侧供电通过自举电路实现,如图 1 所示,当下管 Q₂ 导通时,C_{VDD} 通过 R_{BT} 和 D_{BT} 给 C_{BT} 充电。应用中,需确保 C_{VDD} 容值远大于 C_{BT} 容值,以免自举供电时,VDD 管脚电压跌幅过大而触发 VDD 欠压保护 (VDD UVLO)。

● 压控振荡器

KP2591(A) 内置电压控制振荡器 (VCO),并根据反馈电压 (FB 管脚电压) 和 SS 管脚电压协同控制 LLC 系统的工作频率。

实际上,FB管脚电压和SS管脚电压,都是通过控制驱动脉宽实现对系统工作频率的控制,系统实际工作的驱动脉宽由两者之间较小值决定。如图3所示,FB管脚电压和SS管脚电压与驱动脉宽成线性关系。在软启动结束后,系统进入正常工作模式,SS管脚电压被上拉到Vss_END(典型值4.0V)之上,此时系统工作频率只受FB管脚电压控制。

系统工作最高频率 fsmax 为:

$$f_{SMAX} = \frac{1}{\left(1us + t_{DEAD_MIN}\right) \cdot 2} = 350kHz$$

式中 tDEAD MIN (典型值 430ns) 为最小死区时间。

系统工作最低频率 fsmin 为:

$$f_{SMIN} = \frac{1}{\left(12.73us + t_{DEAD\ MIN}\right) \cdot 2} = 38kHz$$

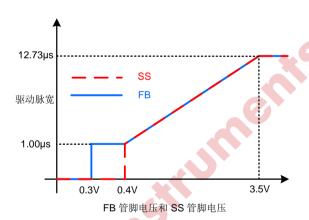


图 3 VCO 控制原理示意图

● 自适应死区控制

合理的死区控制逻辑是半桥驱动电路可靠性的重要保障。芯片设定最小死区时间 tDEAD_MIN (典型值 430ns) 和最大死区时间 tDEAD_MAX (典型值 20μs),同时内置自适应死区控制功能以提高系统可靠性和工作效率。

如图 4 所示,变压器励磁电感为 Lm,变压器漏感作

为谐振电感 Lr,要求变压器的辅助绕组 Na 与原边绕组 Np 耦合,故变压器原边绕组电压 VAB 与辅助绕组电压 VAUX 成比例关系。由于谐振电容 Cr 的电压在开关瞬间可视为不变,故可近似认为桥臂中点电压 VHB 的斜率和辅助绕组电压 VAUX 的斜率成比例关系 (即变压器原边绕组与辅助绕组的匝比)。结合DEM 管脚电阻分压,可得以下关系式:

$$\frac{dV_{DEM}}{dt} = \frac{R_{DEM\,2}}{R_{DEM\,1} + R_{DEM\,2}} \cdot \frac{N_a}{N_p} \cdot \frac{dV_{HB}}{dt}$$

因此,芯片可以通过检测 DEM 管脚电压的斜率来 表征桥臂中点电压斜率,以实现自适应死区控制, 如图 5 所示 (注意变压器同名端与图 4 保持一致)。

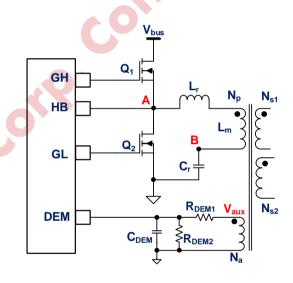


图 4 自适应死区检测电路图

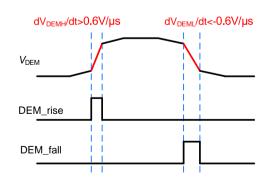
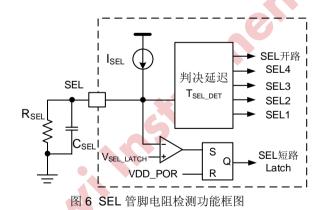


图 5 自适应死区控制原理示意图


SEL 管脚申阳检测和锁存

当 VDD 管脚电压第一次上电到 VDD REG (典型值 11.6V) 时, 芯片开始检测 SEL 管脚电阻的阻值, 并将检测结果锁存。检测方式如图 6 所示, SEL 管 脚对外流出电流 Isel (典型值 10µA), 芯片通过检测 电阻 Rsel 上的电压选定相应的工作参数。当检测到 SEL 管脚电压超过 VSEL_OPEN (典型值 4.5V) 时,系 统判定触发 SEL 管脚开路保护,进入 Latch 模式。 芯片每次重启都需要经历上述电阻检测和结果锁存 的过程。此外,芯片在工作中实时检测 SEL 管脚 电压, 当 Vsel<Vsel_latch (典型值 0.36V) 时, 触发 SEL 短路保护, 芯片同样可以进入 Latch 模式。

根据系统是否带 PFC 功能和系统稳态工作谐振频 率大小推荐 RSEL 电阻如下:

	SEL1	SEL2	SEL3	SEL4
PFC	有	无	有	无
谐振频率	>100kHz	>100kHz	<70kHz	<70kHz
R _{SEL}	56kΩ	100kΩ	200kΩ	330kΩ

注意:设置不同的 Rsel 电阻,仅影响某些参数的设 定(详见电气参数表)。

软启动

如图7所示,芯片启动后,VDD管脚电压达到开启 电压 VDD ON (典型值 13.5V),输出电压未建立,反 馈光耦开路,FB管脚电压上拉至 VFB OPEN (典型值 5V), 而 SS 管脚电压通过电流 Iss_sτ (典型值 5.5μA) 对电容 Css 充电, SS 管脚电压线性上升。如图 8

所示, ta 前系统开环运行, Vss < VFB, VCO 受 Vss 电压控制; t3后系统闭环运行, Vss > VFB, VCO 受 VFB 电压控制。软启动过程中, VCO 频率随 Vss 电 压上升而下降,调节电容 Css 的容值,可调节软启 动的时间和速度。

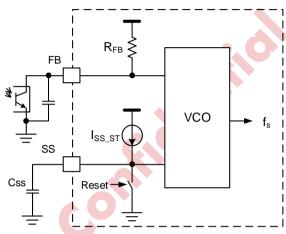


图 7 FB / SS 管脚电压控制 VCO 功能框图

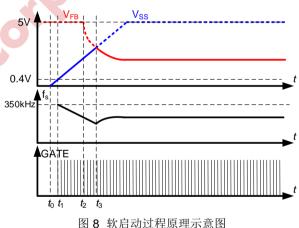
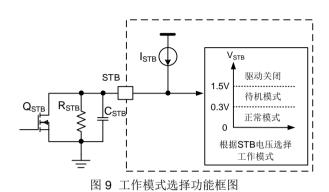


图 8 软启动过程原理示意图


工作模式选择

如图 9 所示, STB 管脚对外流出电流 ISTB (典型值 30μA), 芯片通过检测电阻 RsτB 上的电压值选定相 应的工作模式。当 STB 管脚电压上升, STB 管脚 电压小于 Vsтв н (典型值 0.35V), 系统处于正常模 式; STB 管脚电压在 V_{STB_H} (典型值 0.35V) 和 VNOSWITCH (典型值 1.5V) 之间为待机模式; STB 管 脚电压超过 Vnoswitch,驱动关闭。工作模式选择 可在系统工作过程中实时检测和切换,例如可通过 控制开关管 QSTB 改变 STB 管脚电压,从而改变工

作模式。

注意: 当正常模式切换到待机模式或驱动关闭状态,需要延迟时间 TsTB_DELAY (典型值 105ms)。而从待机模式或驱动关闭状态切换到正常模式时,无需该延迟时间。

● 打嗝 (Burst) 模式

打嗝模式是正常模式中的一种特殊工作状态。由于LLC变换器寄生参数影响,轻载情况下LLC变换器会出现输出电压飘高的现象,为维持输出电压稳定,轻载情况下LLC进入打嗝模式。如图 10 所示,当FB管脚电压低于阈值 VFB_BURSTIN (典型值 0.26V) 时,芯片驱动关闭而输出电压开始降低,FB 管脚电压上升;当 FB 电压高于阈值 VFB_BURSTOUT (典型值 0.3V) 时,芯片重新开始工作而输出电压开始上升,FB 管脚电压下降。

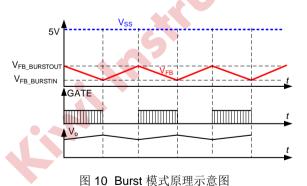


图 IO Duist 侯氏原理小总的

● 待机模式

待机模式下,芯片工作状态由 FB 管脚电压和 SS 管脚电压协同控制。SS 管脚电容根据 FB 管脚电压

进行充放电,由于该模式下,FB 管脚电压超过 SS 管脚电压, 故芯片的工作频率由 SS 管脚电压决定。

如图 11 所示,当 FB 管脚电压上升到高于阈值 VFBSS_CH (典型值 4.3V) 时,SS 管脚电容开始充电,充电电流为 ISS_CH_LL / ISS_CH_HL (典型值 44μA / 22μA,根据输入电压状态调整); 当 FB 管脚电压下降到低于阈值 VFBSS_DCH (典型值 4.1V) 时,SS 管脚放电,放电电流为 ISS_DCH_LL / ISS_DCH_HL (典型值 88μA / 44μA,根据输入电压状态调整)。芯片驱动受 SS 管 脚 电压 控 制,当 SS 管 脚 电压 高于 阈值 VSS_ON_STB (典型值 1.2V / 0.9V,参数根据工作状态调整) 时,芯片开始输出驱动;当 SS 管脚电压低于阈值 (VSS_ON_STB-VSSONSTBHYS) (典型值 1.1V / 0.8V,参数根据工作状态调整) 时,芯片停止驱动。待机模式可以有效减小系统开关频率,降低待机损耗。

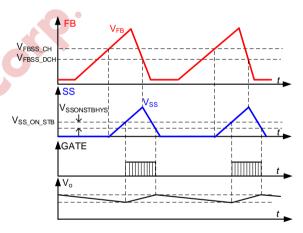


图 11 待机模式原理示意图

● 自适应容性区保护

KP2591(A) 集成自适应容性区保护功能,以提高系统工作可靠性。芯片通过 CS 管脚检测的谐振电流信号和 DEM 管脚检测的辅助绕组电压信号实现容性区保护功能,电流检测电路与辅助绕组检测电路如图 12 所示 (注意变压器同名端与下图保持一致)。

容性区保护工作波形如图 13 所示。当 DEM 管脚电压上升至高于阈值 VDEM_CAPL (典型值 0.4V),且检测到谐振电流的 CS 管脚电压上升至高于阈值

Vcs_CAPL (典型值 -1.0V) 时,下管 GL 触发容性区保护,并强制关断;当 DEM 管脚电压下降至低于阈值 Vdem_CAPH (典型值 -0.2V),且检测到谐振电流的 CS 管脚电压下降至低于阈值 Vcs_CAPH (典型值 1.0V) 时,上管 GH 触发容性区保护,并强制关断。

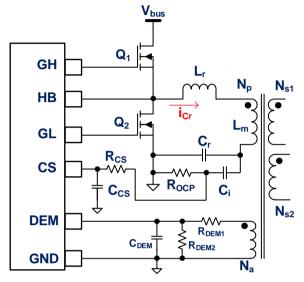


图 12 容性区保护检测电路图

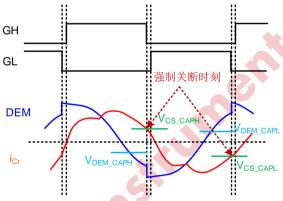


图 13 容性区保护工作原理示意图

● 过流保护

芯片通过 CS 管脚检测 LLC 谐振腔电流,实现系统逐周期过流保护 (CBC OCP) 和输出过流保护 (OCP)。如图 14 所示,当检测到 CS 电压超过 Vocp_H (典型值 3.6V / 4.1V,参数根据工作状态调整)时,上管驱动 GH 关闭,同时当 CS 电压超过 VsocpH (典型值 3.4V / 3.9V,参数根据工作状态调整)时,触发 SS 管脚下拉电流 Iss_socp (典型值

90uA)。SS 管脚电压下降,使 VCO 控制驱动脉宽减小,有利于系统从逐周期过流状态中恢复。同理,下管也可以触发过流保护,保护逻辑与上管相同。

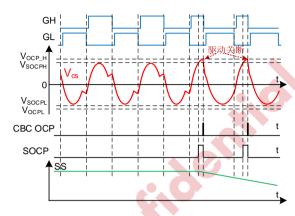


图 14 谐振腔 CBC OCP 和 SOCP 原理示意图

芯片复用 SEL 管脚进行输出过流保护 (OCP) 检测计时。如图 15 所示,SEL 管脚电压在 Vocp_oscl (典型值 0.6V) 到 Vocp_osch (典型值 0.8V) 之间振荡,充电电流为 locp_ch (典型值 25µA),放电电流取决于 SEL 管脚电阻 Rsel。当系统持续触发逐周期过流保护时,芯片使能内部 SEL 管脚振荡计数器。当计数达到 Nocp_sel (典型值 36) 时,触发输出过流保护,驱动停止。

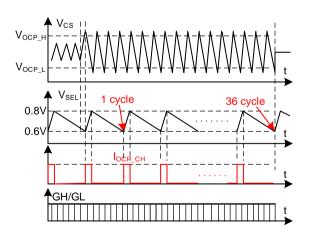


图 15 输出过流保护 (OCP) 原理示意图

● X 电容放电功能

如图 16 所示,为了避免在用户拔下电源并无意中接触交流输入端子时发生电击, Cx1 电容需要并联

放电电阻 (R₁、R₂)。而放电电阻的存在会增加系统 待机功耗。KP2591(A) 集成了输入掉电检测和 X-CAP 放电功能,可以省掉放电电阻并有效降低待机 功耗。

特别注意: HV 管脚不允许连接至直流母线电压。

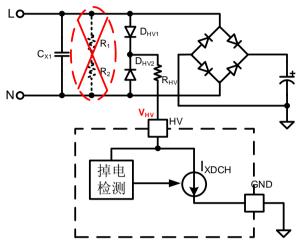


图 16 输入掉电检测及 X-CAP 放电功能框图

芯片通过检测 HV 管脚电压的变化,识别输入掉电状态并启动放电功能。如图 17 所示,掉电检测延迟时间为 Tacoffdet (典型值 56ms),放电电流为 Ixdch (典型值 2mA),放电周期 Txdch (典型值 2ms),放电占空比 75%。

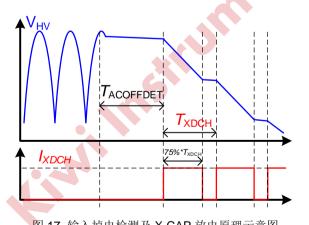
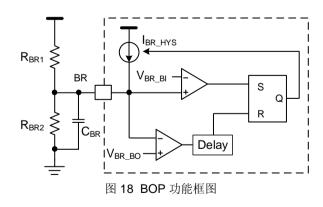


图 17 输入掉电检测及 X-CAP 放电原理示意图

● 输入欠压保护 (BOP)

KP2591(A) 的输入欠压保护功能通过 HV 管脚和 BR 管脚实现。芯片在第一次启动时会检测 BR 管

脚状态并锁存。若检测到 BR 管脚悬空,则 BOP 功能通过检测 HV 管脚电压实现;反之,BOP 功能通过检测 BR 管脚电压实现,而 HV 管脚的 BOP 功能被禁止。


当 BR 管脚悬空时,HV 管脚电压持续 TBOP_DELAY (典型值 110ms) 时间低于 VHV_BO (典型值 90V),触发 BOP,驱动关闭;当 HV 管脚超过 VHV_BI (典型值 95V) 时,芯片退出 BOP 状态,驱动重新开启。

当 BR 管脚未悬空时, BR 管脚电压低于 V_{BR_BO} (典型值 0.635V), 触发 BOP, 驱动关闭; 当 BR 管脚超过 V_{BR_BI} (典型值 0.65V) 时,芯片退出 BOP 状态,驱动重新开启,同时 BR 管脚流出迟滞电流 I_{BR_HYS} (典型值 1μA),如图 18 所示。

假设期望系统触发 BOP 的输入电压直流量为 V_{IN_BO}, 退出 BOP 的输入电压直流量为 V_{IN_BI}。由此可以推算电阻 R_{BR1} 和 R_{BR2} 的阻值。

$$R_{{\it BR}1} = \frac{V_{{\it IN}_{\it BI}} \cdot V_{{\it BR}_{\it BO}} - V_{{\it IN}_{\it BO}} \cdot V_{{\it BR}_{\it BI}}}{I_{{\it BR}_{\it HYS}} \cdot V_{{\it BR}_{\it BI}}}$$

$$R_{{\it BR}2} = \frac{V_{{\it IN_BI}} \cdot V_{{\it BR_BO}} - V_{{\it IN_BO}} \cdot V_{{\it BR_BI}}}{I_{{\it BR_HYS}} \cdot \left(V_{{\it IN_BI}} - V_{{\it BR_BI}}\right)}$$

● 输入高低压检测

KP2591(A) 通过检测 HV 管脚电压判定高压 (HL) 输入或低压 (LL) 输入状态。当 HV 管脚电压持续 T_{HL_DELAY} (典型值 26ms)时间低于 V_{IN_HL} (典型值 226V), 芯片判定为低压输入状态, 当 HV 管脚超

过 V_{IN_LH} (典型值 240V) 时,芯片判定为高压输入状态。

● 输入过压保护 (LOVP)

KP2591(A) 通过检测 HV 管脚电压实现输入过压保护。当 HV 管脚电压持续 TLOVP_DELAY (典型值110ms) 时间高于 VLOVP_IN (典型值525V), 芯片触发输入过压保护, 当 HV 管脚低于 VLOVP_OUT (典型值500V) 时,芯片退出输入过压保护状态。

● 过载保护

KP2591(A) 的过载保护有两种,一种是 FB 管脚开环触发输出过载保护,另一种是 DEM 管脚过压触发输出过载保护。

当芯片检测到 FB 管脚电压持续 ToLP_FB (典型值 150ms) 时间高于 VoLP_FB (典型值 4.3V) 时,触发 FB 管脚过载保护 (FB OLP),驱动停止。

DEM 管脚信号为交流信号,当芯片检测到 DEM 管脚电压高于 Volp_DEM (典型值 3.36V / 3.08V,参数根据工作状态调整) 时,开启内部计时,若 DEM 管脚电压持续 tolpdem_RST (典型值 100μs) 时间未出现高于 Volp_DEM 时,则复位上述计时器,若计时器一直未复位并持续 Tolp_DEM (典型值 75ms) 时间,触发 DEM 过载保护 (DEM OLP),驱动停止。

● VDD 过压保护和欠压保护

芯片检测到 VDD 管脚电压超过 VDD_OVP (典型值 28.5V) 时,芯片触发 VDD 过压保护,驱动停止。

芯片检测到 VDD 管脚电压低于 V_{DD_OFF} (典型值 9.0V) 时,芯片触发 VDD 欠压保护,驱动停止。

● VBT 欠压保护

芯片检测到 VBT 管脚电压超过 VBT_ON (典型值 8.8V)时,芯片高压侧驱动使能。当检测到 VBT 管脚电

压低于 V_{BT_OFF} (典型值 7.5V) 时,高压侧供电触发 欠压保护,高压侧驱动停止。

● 过热保护 (OTP)

当芯片结温超过 TsD (典型值 140℃) 时,芯片停止工作,进入过热保护。当芯片温度下降至结温低于TRC (典型值 120℃),芯片重新启动。

● 驱动电路

KP2591(A) 的高压侧和低压侧驱动均具有 +0.6A/-1.0A 的电流能力,有效降低了开通过程中的交越损耗,提高了系统效率和增强了系统可靠性。驱动内部设计有 12V 的 MOSFET 源极驱动电压钳位功能,有效减小驱动损耗,提高驱动可靠性。

● 保护锁存 (Latch) 和保护自动重启

芯片触发保护后可讲入锁存模式或自动重启模式。

锁存模式: 芯片停止驱动, VDD 工作电流为 IVDD_LATCH (典型值 0.65mA), 只有当 VDD 电压低于 VDD POR (典型值 8.5V) 时才能复位并重启。

自动重启模式:触发保护后芯片停止工作,等待时间 Trecovery (典型值 810ms) 后,芯片自动复位重启。

应用指南

● PCB 设计指南

PCB 设计对芯片正常工作,以及系统的 THD, EMI, ESD 等性能有显著影响,设计回路和布线时 建议参考以下准则。

- 1. 主功率环路 Loop1 和 Loop2 的面积应尽可能 小。主功率环路包含直流母线电容,变压器原 边绕组,谐振电容,功率 MOSFET。
- 2. 管脚滤波电容和管脚参数配置电路应尽可能地 靠近芯片管脚放置,到芯片管脚的引线应尽可 能地短。例如,VDD 管脚的稳压电解电容和

- 去耦电容, VBT 管脚和 HB 管脚之间的自举电容, DEM/CS 管脚的滤波电容, FB 管脚的环路补偿电路, SS 管脚的配置电容, STB/SEL管脚的配置电阻和电容等。
- 3. 尤其需要注意将芯片及弱电控制电路的参考地, 与主功率回路的参考地隔开。两个参考地应通 过单点连接,连接点应尽可能地靠近直流母线 电容的负端。
- 4. 芯片,弱电控制电路和信号线应尽可能地远离 主功率回路,不能放置在主功率回路内部,也 不应放置在变压器下方。
- 5. 尤其注意 DEM 的采样回路 Loop3、CS 的采样 回路 Loop4 和 FB 的采样回路 Loop5 不要包含 动点 HB,尽量远离主功率回路,否则采样信号受干扰,芯片可能易触发保护,无法正常工作。

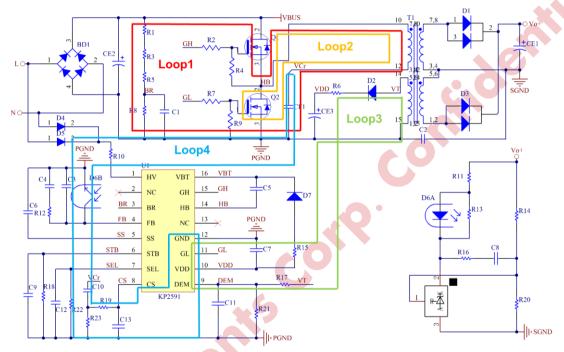


图 19 layout 换流回路

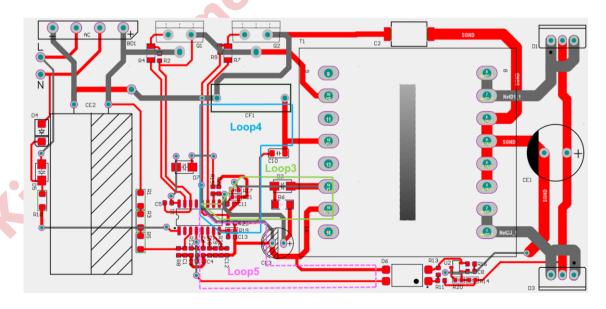
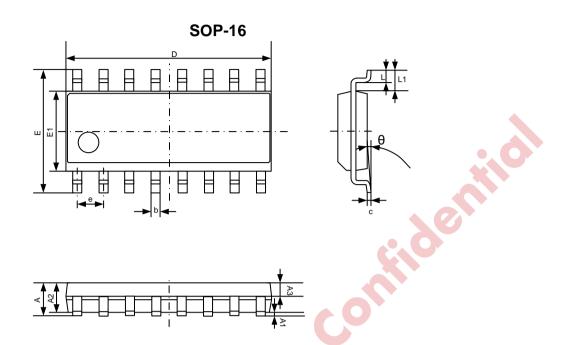
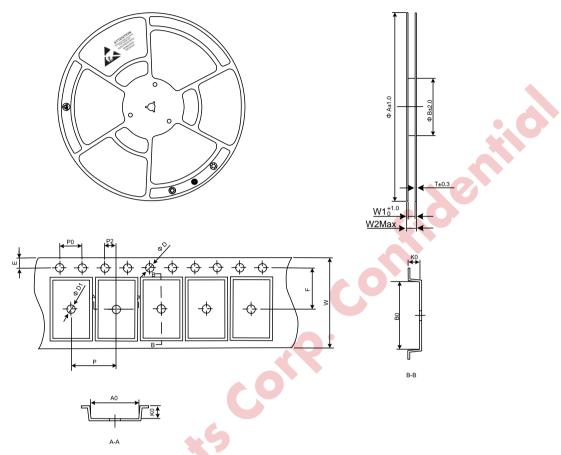



图 20 典型 PCB layout 示意图


封装尺寸

符号	尺寸 (毫米)		尺寸 (英寸)		
	最小	最大	最小	最大	
А	-	1.750	-	0.069	
A1	0.100	0.225	0.004	0.009	
A2	1.300	1.500	0.051	0.059	
A3	0.600	0.700	0.024	0.028	
b	0.330	0.470	0.013	0.019	
С	0.200	0.240	0.008	0.009	
D	9.500	10.050	0.374	0.396	
E	5.800	6.200	0.228	0.244	
E1	3.750	4.000	0.148	0.157	
е	1.270 (BSC)		0.050 (BSC)		
L	0.500	0.800	0.020	0.031	
L1	1.100 (REF)		0 (REF) 0.043 (REF)		
θ	0°	8°	0°	8°	

编带和卷盘信息

卷盘尺寸 (mm)				
Α	B (内径)	W1	W2 Max	Т
330	100	12.4	18.4	1.5

编带尺寸					
符号 尺寸 (mm)		符号	尺寸 (mm)		
E	1.75±0.10	W	16.00±0.30		
F	7.50±0.05	Р	8.00±0.10		
P2	2.00±0.10	A0	6.70±0.10		
D	1.55±0.05	В0	10.40±0.10		
D1	$1.50^{+0.25}_{-0}$	K0	2.10±0.10		
P0	4.00±0.10				

包装数量				
封装形式	只/盘	盘/盒	盒/箱	只/箱
SOP-16	3000	2	8	48000

声明

必易微保留在没有通知的情况下对其产品和产品说明书或规格书进行任何修改的权利。客户下单前请获取最新资料。产品说明书或规格书不用于作任何明示或暗示的保证包括但不限于产品的商用性、目的适用性或不侵犯他人权利等,也不用于作任何授权包括但不限于对必易微或第三方知识产权的授权。使用者在将必易微的产品整合到应用中时或使用过程中应确保该具体应用或使用不侵犯他人知识产权或其他权利,因该应用或使用引起纠纷或造成任何损失的,必易微不承担任何法律责任包括但不限于间接责任或偶然损失责任。未经必易微书面说明,必易微的产品非为用于人体植入器械和提供生命支持系统的目的而设计。本声明替代以往版本的声明。

DS_KP2591(A)_REV1.01S_CN