LP4931A 三相无刷直流电机前置驱动器

1 产品特性

- 可驱动 6 个 N 沟道的 MOSFET
- 同步整流降低功耗
- 内部欠压锁定(UVLO)和过热关机电路
- 霍尔元器输入
- PWM 电流限制
- 死区保护
- FG 输出
- 待机模式
- 死锁检测保护
- 过压保护

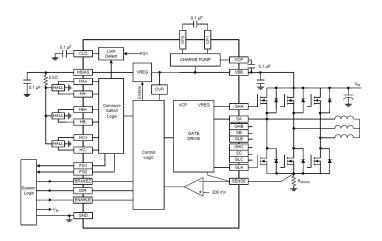
2 应用范围

- OA 设备
- 家用电器消费品
- 电动工具
- 设备风机

3 产品概述

LP4931A 是一款完善的三相无刷直流电机的前置驱动器。该设备可驱动多种 N 沟道的功率 MOSFET,支持的马达供电电压高达 30V。利用外部三个霍尔元件输入信号实现 120°换相。

其它功能包括固定关闭时间的脉宽调制(PWM)限制 浪涌电流、可调节延迟的堵转保护、过热停机保护、 过压监视和同步整流。内部同步整流可通过在电流衰 减时导通相应的 MOSFE 短接体二极管,减少了 RDS(on)降低功耗。当电流导通期间,马达放电导致供电电压超过保护阀值时,过压保护会禁止同步整流。


LP4931A 提供启动(ENABLE)、方向(DIR)和刹车(BREAK)输入信号,内部调控或使用 ENABLE 可以控制电流。逻辑输出信号 FG1 和 FG2 用于精确检测马达的旋转。在霍尔状态变化时切换输出信号状态,提供一个比较准确的速度输出,用于微控制器或速度控制电路。

工作温度范围: -20° C \sim 105 ° C。LP4931A 采用 5 mm \times 5 mm,28-PinQFN 封装,带外露热传导垫片。该小型封装为无铅产品,引线框架采用 100% 雾锡电镀。

器件信息

零件号	封装	封装尺寸 (标称值)
LP4931A	28-PinQFN	5mm x 5mm

简化示意图

13066933605

4 订购指南

产品名	打标印记	封装形式	装料形式	最小包装数量
LP4931A	LP4931A XXXXX	28-PinQFN		

5 修订历史

版本	修改内容	修改时间
V1.0	创建	2023.03.09

录目

1		产品	品特性	1
2		巡月	月范围	1
3		产品	·	1
4		汇服	勾指南	. 2
5			丁历史	
6		引肽	即功能描述	4
7		->- -:□	品规格	_
/		<i>/</i> — fi	i	6
	7.	1	极限额定参数	6
	7.	2	ESD 额定值	
	7.	3	温度特性参数	6
	7.	4	电气特性	7
8		功能	b描述	9
9		LP	4931A 说明	13
	9.	1 功	力能框图	13
	9.	2 典	1型应用电路	13
16	走	 法信	늴自	11

6 引脚功能描述

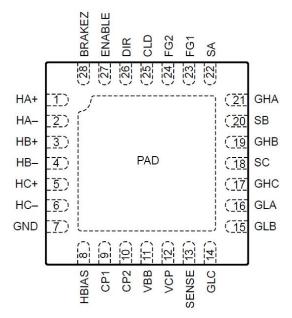


图 7-1 28-PinQFN 顶视图

表 7-1 芯片引脚描述

编号	名称	功能
1	HA+	A相霍尔输入正
2	HA-	A相霍尔输入负
3	HB+	B相霍尔输入正
4	HB-	B相霍尔输入负
5	HC+	C相霍尔输入正
6	HC-	C相霍尔输入负
7	GND	地
8	HBIAS	霍尔偏置电压输出
9	CP1	电荷泵电容端
10	CP2	电荷泵电容端
11	VBB	电源输入
12	VCP	储能电容端子
13	SENSE	接电流检测电阻
14	GLC	C相低边门控驱动输出
15	GLB	B相低边门控驱动输出
16	GLA	A相低边门控驱动输出

编号	名称	功能
17	GHC	C相高边门控驱动输出
18	SC	C相连接端
19	GHB	B相高边门控驱动输出
20	SB	B相连接端
21	GHA	A相高边门控驱动输出
22	SA	A相连接端
23	FG1	转速控制输出
24	FG2	转速控制输出
25	CLD	死锁检测时序电容
26	DIR	正反转控制输入
27	ENABLE	外部PWM控制
28	BRAKEZ	制动输入(负逻辑)

7 产品规格

7.1 极限额定参数(Ta = 25 ° C)

符号	定义	最小值	最大值	单位
V _{BB}	供电电压		38	
S _X	电机输出(t _w < 500 ns)		-3	
V _{Hx}	霍尔输入(DC)	-0.3	7	V
V _{IN}	逻辑输入电压范围	-0.3	7	
V_{FG}	逻辑输出电压范围(FG1, FG2 脚)	-0.3	7	

7.2 ESD 额定值

符号	定义	最小值	最大值	単位
ESD	人体放电模式	2000	_	V
ESD	机器放电模式	500	_	V

7.3 温度特性参数

符号	定义	最小值	最大值	单位
R _{θJA}	封装热阻,结点到外面(4层 JEDEC 标准 PCB 板)		32	°C/W
R _{0JP}	封装热阻,结点到散热焊盘		2	C/VV
T _A	工作环境温度	-20	105	°C
$T_{J(max)}$	最大结温度		150	°C
T _{stg}	储藏温度	-40	150	°C

注 1: 在超过极限额定值工作时,可能会损坏电路。损坏可能是引脚之间的短路或引脚与内部电路之间的断路。因此,考虑电路保护措施很重要,例如增加保险丝,以防 IC 在超过额定值情况下工作。

7.4 电气特性

(除非另有注明, TA= 25℃, VBB = 24 V)

符号	定义	最小值	典型值	最大值	单位	测试条件
V _{BB}	供电电压	8	_	V _{BBOV}	V	Operating
	供电电流	_	5	6	mA	f _{PWM} < 30 kHz, C _{LOAD} = 1000 pF
I _{BB}	供电电流	-	3	3.5	mA	电荷泵起动, outputs disabled, Standby mode
V _{HBIAS}	HBIAS电压	7.2	7.5	7.8	V	$0 \text{ mA} \leqslant I_{\text{HBIAS}} \leqslant$ 24 mA
I _{HBIASlim}	HBIAS电流	30	_	_	mA	
逻辑信号						
V _{IN(1)}	输入逻辑电平	2	_	_	V	
V _{IN(0)}	输入逻辑电平	_	_	0.8	V	
I _{IN(1)}	输入逻辑电流	-1	<1.0	1	μA	V _{IN} = 2 V
I _{IN(0)}	输入逻辑电流	-1	<-1.0	1	μA	V _{IN} = 0.8 V
	输入毛刺消除(ENB 脚)	350	500	650	ns	
t _{GLITCH}	输入毛刺消除(DIR, BRAKEZ 脚)	700	1000	1300	ns	
t _{dENB}	ENB脉冲传播延时	2.1	3	3.9	ms	到输出关断
t _{dHBIAS}	HBIAS唤醒延时	_	15	25	μs	C _{HBIAS} = 0.1 μF
门驱动信]					
V _{GS(H)}	高边门驱动输出	7	_	_	V	相对于V _{BB} , I _{GATE} = 2 mA
$V_{GS(L)}$	低边门驱动输出	7	_	_	V	I _{GATE} = 2 mA
I _{Gate}	门驱动电流 (源)	20	30	_	mA	V _{GH} = V _{GL} = 4 V
R _{Gate}	门驱动下拉电阻	10	28	40	Ω	
t _{dead}	死区	700	1000	1300	ns	
V _{REF}	限流输入门限	180	200	220	mV	
t _{OFF}	固定关闭时间	18	25	37	μs	

符号	定义	最小值	典型值	最大值	单位	测试条件
保护						
T _{JTSD}	温度保护阈值	155	170	185	°C	
T _{JTSDhys}	温度保护回滞	14	15	26	°C	
V_{BBUV}	VBB欠压保护门限	6.2	7	7.85	V	V _{BB} 上升边
V _{BBUVhys}	VBB欠压保护回滞	0.4	0.75	1	V	
V _{CPUV}	VCP欠压保护门限	4.6	_	6	V	相对于V _{BB}
t _{lock}	死锁检测时长	1.5	2	2.5	s	C = 0.1 µF
V_{BBOV}	VBB过压压保护门限	30	33	37.5	V	Vвв上升边
霍尔信号		<u> </u>				
I _{HALL}	霍尔输入电流	-1	0	1	μA	V _{IN} = 0.2 to 3.5 V
V _{CMR}	共模输入范围	0.2	_	3.5	V	
V_{HALL}	差分输入范围	60	_	_	mV _{p-p}	
V_{th}	霍尔阈值	_	±10	_	mV	霍尔差分输入切换点
	霍尔阈值回滞	10	20	30	mV	T _J = 25° C
V_{HYS}	霍尔阈值回滞	5	20	40	mV	T _J = - 20° C to 125° C
t _{pulse}	过滤脉冲宽度	_	2	_	μs	
FG	•				·	•
V _{FG(sat)}	FG输出饱和电压	_	_	0.5	V	I _{FG} = 2 mA
I _{FGlkg}	FG漏电流	_	_	1	μA	V _{FG} = 5 V

8 功能描述

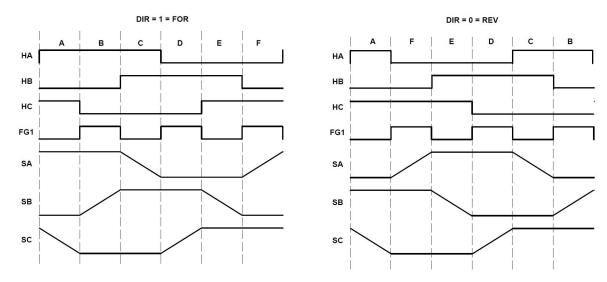


图 8-1 换向时序

表 8-1 换向逻辑表

										1	H- H1 #A-11	,			
条件							則且級列制山					电机输出			
		HA	HB	HC	BRAKEZ	ENB	GHA	GLA	GHB	GLB	GHC	GLC	Α	В	С
	Α	+	_	+	HI	LO	HI	LO	LO	HI	LO	LO	Η	LO	Ζ
	В	+	_	_	HI	LO	HI	LO	LO	LO	LO	Η	H	Z	Ю
DIR = 1	С	+	+	_	HI	LO	LO	LO	HI	LO	LO	Η	Z	HI	Ю
(顺时针)	D	1	+	_	HI	LO	LO	HI	HI	LO	LO	LO	LO	HI	Ζ
	Е	1	+	+	HI	LO	LO	HI	LO	LO	HI	LO	LO	Z	Ξ
	F	1	_	+	HI	LO	LO	LO	LO	HI	HI	LO	Z	LO	Ξ
	Α	+	_	+	HI	LO	LO	HI	HI	LO	LO	LO	LO	HI	Ζ
	F	1	_	+	HI	LO	LO	LO	HI	LO	LO	H	Z	HI	LO
DIR = 0	Е	1	+	+	HI	LO	HI	LO	LO	LO	LO	H	Ξ	Z	LO
(逆时针)	D	-	+	-	HI	LO	HI	LO	LO	HI	LO	LO	Ξ	LO	Ζ
	С	+	+	-	HI	LO	LO	LO	LO	HI	HI	LO	Z	LO	Ξ
	В	+	_	-	HI	LO	LO	HI	LO	LO	HI	LO	LO	Z	Ξ
Fault	*	+	+	+	HI	Х	LO	LO	LO	LO	LO	LO	Z	Z	Z
Fault	*	ı	-	-	HI	Х	LO	LO	LO	LO	LO	LO	Z	Z	Z
Brake	*	Х	Х	Х	LO	Χ	LO	HI	LO	HI	LO	HI	LO	LO	LO

X=任意值, Z=高阻态

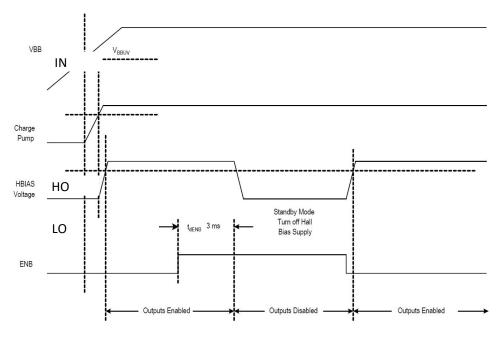


图 8-2 上电时序

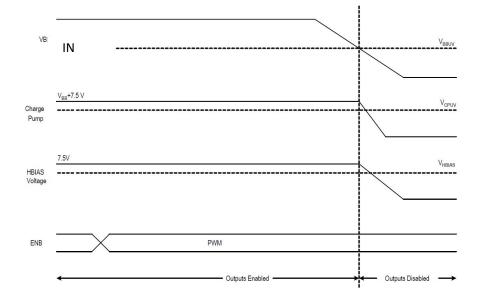


图 8-3 掉电时序

电流调节

负载电流由内部固定关闭时间的PWM控制电路调节。当全桥输出导通时,马达线圈中的电流开始增加,当到达到调节电流ITRIP时,电流检测比较器复位高边门闩,关断线圈电流。此后,负载电感会导致电流再循环保持一定的时间(固定关闭时间)。ITRIP由以下公式得出:

 $I_{TRIP} = 200 \text{ mV} / R_{SENSE}$

使能信号

使能输入端(ENB)允许接外部PWM信号。ENB为低电平时驱动打开对应的一对高边门和低边门。ENB为高电平时将关闭相应的高边驱动门,负载电流开始衰减。如果ENB保持低电平,电流会持续增加,直到达到内部限流电路设定的水平。典型的PWM频率在20 kHz到30 kHz之间。如果ENB高电平脉冲信号宽度超过3ms,门输出会被禁止。使能信号的逻辑关系总结如下表:

表 8-2 使能信号的逻辑关系

ENB脚	输出	输出状态	
0	On	驱动门打开	
1	消减	同步整流慢衰减	
1 for > 3 ms	Off	驱动门关闭	

固定关闭时间

理论上LP4931A的固定关闭时间设置为25us。

PWM 屏蔽定时器

当高边驱动管打开时,由于钳位二极管的反向恢复电流和负载分布电容引起的瞬态响应,会出现尖峰电流。 为了防止尖峰电流错误地复位高边驱动门闩,限流检测比较器会被屏蔽。屏蔽定时器会在断开时间计 数器完成后起动,以便提供屏蔽功能。当ENB变高电流消减时,或者DIR改变时,该屏蔽定时器被复位。通过外部 PWM控制,DIR改变或ENB打开,会触发屏蔽功能。持续时间固定为1.5 μ s。

同步整流

无论是在ENB为高电平期间或触发内部固定关闭期间,当一个PWM关断周期触发时,负载电流都都会继续循环流动。在电流衰减期间,LP4931A同步整流功能打开相应的MOSFET,并快速短路体内二极管,降低导通电阻(RDS(on))。这显著降低了功率耗散并省去了外接的肖特基二极管。

刹车模式

当给引脚BRAKEZ加低电平时,将激活刹车模式。加高电平时正常工作。刹车功能打开所有的三个低边驱动管,有效短路了马达产生的反电动势。BRAKEZ控制优先级高于ENB输入,也高于死锁检测功能。值得注意的是,刹车时内部PWM电流控制电路不会限制电流,因为电流不流经限流电阻。最大电流可通过VBEMF/RLOAD估算。一定要注意确保在最糟的情况(刹车、高速、高惯性负载)下都不会超过LP4931A的额定参数值。

霍尔偏压

该功能提供7.5V电源,输出电流不超过30mA。该参考电压给芯片内部逻辑电路和外部霍尔元件供电。

待机模式

为减少驱动霍尔元件消耗的功率,进入待机模式将关闭HBIAS输出。保持ENB高电平超过3ms会进入待机模式。请注意,刹车模式优先级高于待机模式,将BRAKEZ引脚保持在高电平才能进入待机模式。

13066933605

电荷泵

内部电荷泵用于产生高于VBB的电源来驱动高边MOSFET。VCP上的电压受内部监测,在故障状态下关断芯片的驱动输出。

故障关机

由于结点温度过高或者由于VCP或VBB欠压而出现故障的状态时,芯片驱动输出会被关断直到故障解除。芯片上电时欠压保护电路(UVLO)也会关闭驱动输出。

过压保护

因为马达产生的反电动势会附加在连接VBB的电源线上,芯片内部监测VBB电压是否过高。当电压超过 VBBOV时,同步整流功能会被禁止。

过温保护

如果晶片温度超过大约170°C, 热关机功能将禁用驱动输出, 直到内部温度下降15℃(回滞)以上。

霍尔状态报告

FG1是开漏输出,外部霍尔元件每一次变换时FG1翻转一次。FG2也是开漏输出,在HAx霍尔元件每一次转换时翻转一次状态。

死锁检测功能

在以下两种状态下,芯片将判定转子死锁:一是FG1没有持续翻转。二是没有遵循正确的换相顺序。这两种情况都允许存在一段时间tlock。tlock由连在CLD引脚上的电容决定。CLD产生一个三角波(1.67 V峰峰值),其频率与电容值线性相关。tlock等于三角波的127周期,或者:

$$t_{lock} = C_{LD} \times 20 \text{ s/ } \mu \text{ F}$$

等待tlock时间以后,驱动输出被关闭,故障锁定。该故障状态可由以下任意一种方法解除:

- DIR引脚上出现上升或下降沿信号
- 超过VBB欠压保护的阀值(在上电期间)
- ENB引脚保持高电平时间 > tlock/2

将CLD接GND,可禁止该死锁检测功能。当LP4931A处于刹车模式时,死锁检测计数器被禁止。

9 LP4931A 说明

9.1 功能框图

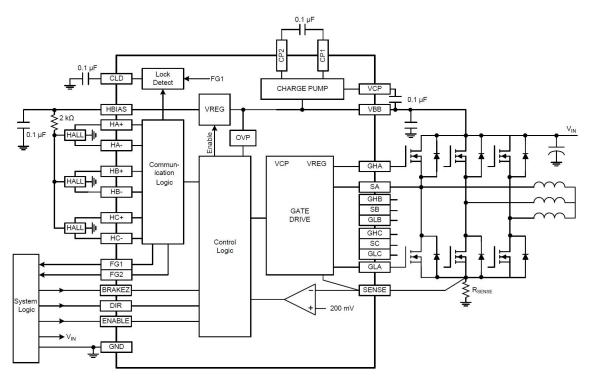


图 9-1 LP4931A 的功能框图

9.2 典型应用电路

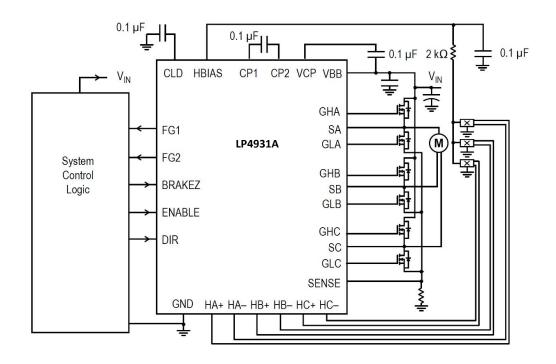
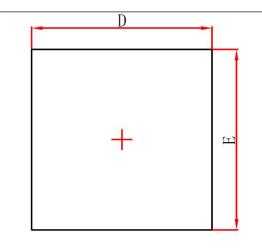
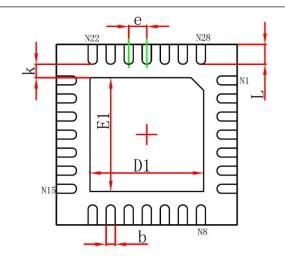
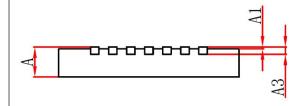




图 9-2 LP4931A 典型应用电路图


10.封装信息

Top View

Bottom View

Side View

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035
A1	0.000	0.050	0.000	0.002
A3	0.203REF.		0.008REF.	
D	4.924	5.076	0.194	0.200
E	4.924	5.076	0.194	0.200
D1	3.050	3.250	0.120	0.128
E1	3.050	3.250	0.120	0.128
k	0.200MIN.		0.008MIN.	
b	0.200	0.300	0.008	0.012
е	0.500TYP.		0.020TYP.	
L	0.474	0.626	0.019	0.025