

GENERAL DESCRIPTION

The VM2020 is an ultra-high AOP, high dynamic range, differential analog output piezoelectric MEMS microphone. This microphone consists of a piezoelectric sensor and circuitry to buffer and amplify the output.

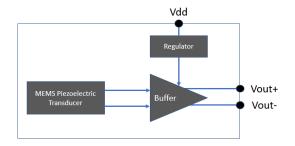
It has an acoustic overload point of 152dB SPL for audio capture in loud environments. The VM2020 has a small 3.76 mm X 2.95 mm X 1.3 mm package. This microphone is reflow solder compatible with no sensitivity degradation.

FEATURES

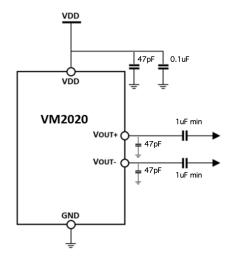
- Ultra-high AOP
- Differential Output
- Low part-to-part variation
- High dynamic range
- Stable performance in all conditions
- Dust and water resistant to IP57


APPLICATIONS

- Subwoofers
- Echo Cancellation
- Outdoor Applications


ORDERING INFORMATION

	Product	Package Description	Quantity	
Ī	VM2020AA	13" Tape and Reel	5,000	



BLOCK DIAGRAM

Functional Block Diagram

TYPICAL APPLICATION CIRCUIT

Typical Application Circuit

TABLE OF CONTENTS

SPECIFICATIONS	3
ABSOLUTE MAXIMUM RATINGS	4
ENVIRONMENTAL ROBUSTNESS	4
RELIABILITY SPECIFICATIONS	4
TYPICAL PERFORMANCE CHARACTERISTICS	5
SOLDER REFLOW PROFILE	
HANDLING INSTRUCTIONS	5
DIMENSIONS AND PIN LAYOUT	6
PCB DESIGN AND LAND PATTERN LAYOUT	6
TAPE AND REEL SPECIFICATIONS	7
LID MARKING	
SUPPORTING DOCUMENTS	8
COMPLIANCE INFORMATION	
CONTACT DETAILS	8
LEGAL INFORMATION	8
REVISION HISTORY	10

SPECIFICATIONS

All specifications are at 25°C, VDD = 1.8 V unless otherwise noted

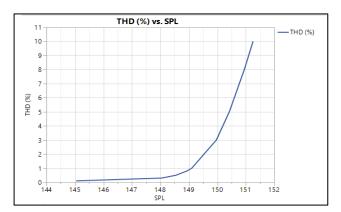
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Acoustic Specifications						
Sensitivity		1 kHz, 94 dB SPL	-66	-63	-60	dBV
Signal-to-Noise Ratio SNR		94 dB SPL at 1 kHz signal, 20Hz to 20kHz, A-weighted Noise		50		dB(A)
Total Harmonic Distortion	THD	94 dB SPL		0.1		%
Total Harmonic Distortion	THD	149 dB SPL		1		%
Acoustic Overload Point	AOP	10.0% THD		152		dB SPL
Roll Off Frequency		-3dB at 1KHz			80	Hz
Directivity			Omni			
Polarity Increase in sou		Increase in sound pressure	Increase in output voltage			
	Ele	ectrical Specifications				
Supply Voltage			1.6	1.8	3.6	V
Supply Current		$V_{Supply} \le 3.6 \text{ V}$		248		μΑ
Power Supply Rejection Ratio	PSRR	VDD = 1.8, 1kHz, 200mV _{PP} Sine wave		90		dB
Power Supply Rejection	PSR	VDD = 1.8, 217Hz, 100mV _{PP} square wave, 20 Hz $-$ 20kHz, A-weighted		-112		dB(A)
Output Impedance	Zout			1100		Ω
Output DC Offset	DC Offset Both Vout+ and Vout-			0.8		V
Startup Time		Within ±0.5dB of actual sensitivity		200		μS

ABSOLUTE MAXIMUM RATINGS

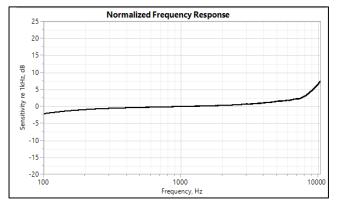
Parameter	Rating	Units	
Supply Voltage	-0.3 to +3.6	V	
Sound Pressure Level	160	dB re 20 μPa	
Operating Temperature Range	-40 to +85	°C	
Storage Temperature Range	-55 to +150	°C	
Mechanical Shock	10,000g per IEC 60028-2-27:2008		
Vibration	Per MIL-STD 883E, 2007.2		

ENVIRONMENTAL ROBUSTNESS

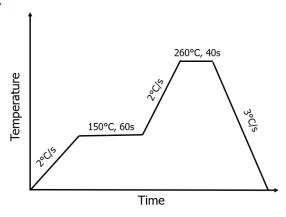
IP adherence is evaluated by 1kHz Sensitivity spec post stress


Ingress Protection Type	Description
Dust Resistance	IP5X;
Water Immersion	IPX7; 2 hrs drying time, dry environment

RELIABILITY SPECIFICATIONS


Stress Test	Description
Temperature Cycling Test	-40°C to +125°C, 850 cycles
High Temperature Operating Life	+125°C, 1000 hours, biased
High Temperature Storage	+125°C, 1000 hours, unbiased
Temperature Humidity Bias	+85°C, 85% RH, 1000 hours, biased
Reflow	3 reflow cycles with peak temperature of +260°C
ESD-HBM	1 discharge, all pins, ± 2kV
ESD-CDM	3 discharges, all pins, ± 750V

TYPICAL PERFORMANCE CHARACTERISTICS

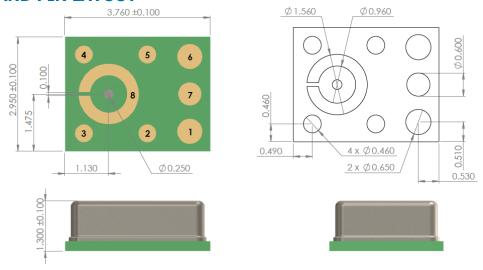


Normalized Frequency Response

SOLDER REFLOW PROFILE

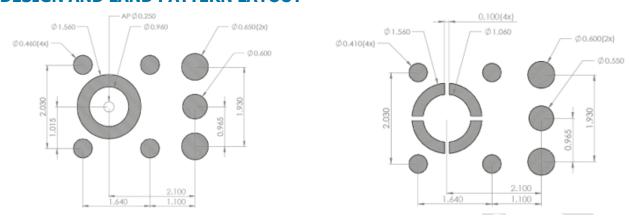
Solder Reflow Profile

HANDLING INSTRUCTIONS


The Piezo MEMS microphone is very robust to harsh environments such as dust and moisture. However, to avoid mechanical damage to the mic we recommend using appropriate handling procedures when manually handling the parts or when using pick and place equipment. The following guidelines will avoid damage:

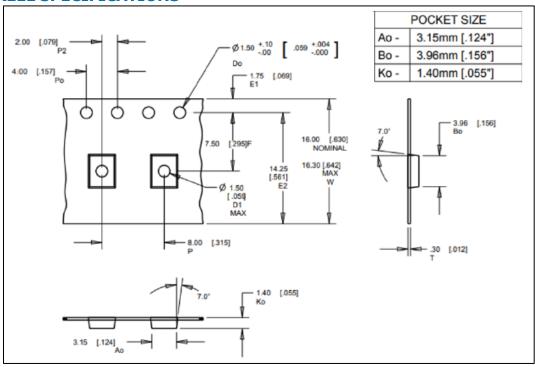
- Do not apply a vacuum to the bottom side of the microphone. A vacuum pen may be used with care on the top side only.
- Do not apply very high air pressure over the port hole.
- Do not insert any large particles or objects in the port hole. The microphone is robust to small particles per IP5x specification.
- Do not board wash or clean after the reflow process or expose the acoustic port to harsh chemicals.

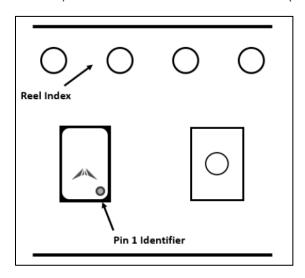
Please refer to this **Application Note** for Microphone Assembly Guidelines.



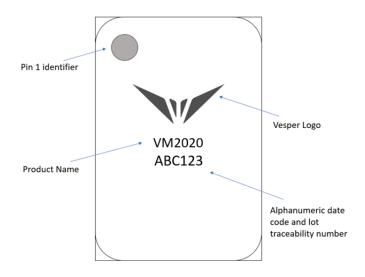
DIMENSIONS AND PIN LAYOUT

Pin Number	Pin Name	Description
1	VOUT-	Negative Output Voltage
2	GND	Ground
3	GND	Ground
4	GND	Ground
5	GND	Ground
6	VDD	Power Supply
7	VOUT+	Positive Output Voltage
8	GND	Ground


PCB DESIGN AND LAND PATTERN LAYOUT


PCB and Solder Stencil Pattern – All dimensions are in mm

TAPE AND REEL SPECIFICATIONS

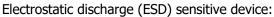

Tape and Reel specification - All dimensions in millimeters (inches)

Part Orientation in Reel (Note: dimensions not to scale)

LID MARKING

Lid Marking Description

SUPPORTING DOCUMENTS


VM2020_Coupon_PCB_UserGuide - Vesper VM2020 Coupon PCB board user guide

VM2020_3D_Model - Vesper VM2020 3D CAD Layout

AN3 – Vesper Piezoelectric MEMS Microphone Assembly Guidelines

AN7, <u>Application Note AN7</u> – Improving Barge-in Performance on Smart Speakers with Ultra High Dynamic Range Microphone

COMPLIANCE INFORMATION

Although this product features industry standard protection circuitry, damage may occur if subjected to excessive ESD. Proper ESD precautions should be taken to avoid damage to the device.

CONTACT DETAILS

Vesper Technologies 77 Summer St Floor 8 Boston, MA 02110

Email: info@vespermems.com

LEGAL INFORMATION

For any questions or comments on the datasheet email: erratum@vespermems.com

High Dynamic Range Bottom Port Piezoelectric MEMS Microphone with Differential Output

PRELIMINARY DATASHEET

Information furnished by Vesper is believed to be accurate and reliable. However, no responsibility is assumed by Vesper for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Vesper. Trademarks and registered trademarks are the property of their respective owners.

REVISION HISTORY

Revision	Date	Description
0.0.0	02/22/2019	Initial Revision
0.0.1	03/11/2019	Added Reel Orientation
		Updated Reliability Spec
0.0.2	03/21/2019	Updated Product Name from VM2020 to VM2020AA
		for documentation
0.0.3	07/14/2019	Updated Vdd limits and output impedance
0.0.4	12/2/2019	Updated dimensions from 2 decimal points to 3
		Added reference to Application Note AN7
0.0.5	07/28/2020	Added pin numbers to the 2d drawing
0.0.6	01/11/2021	Updated Typical Application Circuit