

GRF5109 28.5 dBm POWER-LNA™ 0.1 to 2.2 GHz

FEATURES

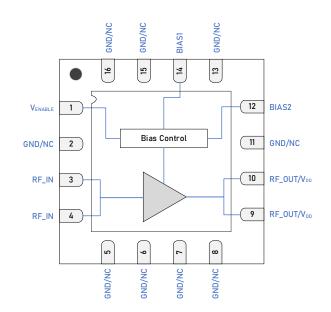
- Excellent P1dB, IP3, ACLR and NF Performance
- Flexible Biasing Provides Latitude for Linearity Optimization
- 160 mA Native Mode Quiescent Current Consumption
- 5 V Supply Voltage
- 50 Ω Single-ended Input and Output Impedances
- -40 to 105 °C Operating Temperature Range
- Process: GaAs pHEMT
- Compact 3 x 3 mm QFN-16 Package

Reference: 5 V / 830 MHz / 160 mA IDDQ

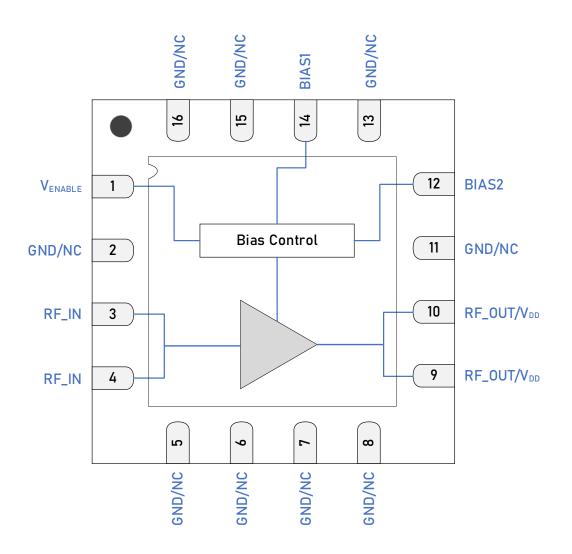
- Gain: 19 dB
- OIP3: 43.5 dBm
- OP1dB: 28.5 dBm
- Evaluation Board Noise Figure: 1.3 dB

APPLICATIONS

- Power Amplifier
- Linear Driver Amplifier for High PAR Waveforms
- Multi-stage LNA


DESCRIPTION

The GRF5109 is a high linearity PA/Linear Driver with low noise figure (NF). It delivers excellent P1dB, IP3 and NF over a wide range of frequencies with fractional bandwidths of roughly 5 to 10%.


This device can be tuned over a wide range of frequencies from around 0.1 GHz up to 2.2 GHz.

Please consult with the GRF applications engineering team for custom tuning/evaluation board data.

BLOCK DIAGRAM

3 x 3 mm QFN-16 Pin Out (Top View)

Pin Assignments

Pin	Name	Description	Note
1	Venable	Enable Voltage Input	V_{ENABLE} and series resistor sets I_{DDQ} . $V_{\text{ENABLE}} \leq 0.2 \text{ V}$ disables device. On-die pull-down resistor will turn the part off if this node is allowed to float.
2, 5, 6, 7, 8, 11, 13, 15, 16	GND/NC	Ground or No Connect	No internal connection to die. These pins can be left unconnected, or be connected to ground (recommended). Use a via as close to the pin as possible if grounded.
3, 4	RF_IN	RF Input	Pins 3 & 4 tied together on system board.
9, 10	RF_OUT/Vdd	PA Output/Bias	Pins 9 & 10 tied together on system board. Supply V_{DD} here.
12	Bias2	Bias Circuit Supply	Connect to V_{DD} through external resistor.
14	Bias1	Bias Circuit Ground	Consult application schematic.
PKG BASE	GND	Ground	Provides DC and RF ground for the LNA, as well as thermal heat sink. Recommend multiple 8 mil vias beneath the package for optimal RF and thermal performance. Refer to evaluation board top layer graphic on schematic page.

Absolute Ratings

Parameter	Symbol	Min.	Мах.	Unit
Drain Voltage	V _{DD}		6	V
Transient Average RF Input Power CW: Load VSWR < 2:1; Duration: <1 hour)	Pin max		24	dBm
Operating Temperature (Package Heat Sink)	Tpkg heat sink	-40	105	°C
Maximum Channel Temperature (MTTF >10 ⁶ Hours)	Тмах		170	°C
Maximum Dissipated Power	Pdiss max		1.0	W

Electrostatic Discharge

Charged Device Model	CDM	1500	V	
Human Body Model	HBM	250	V	

Storage

Storage Temperature	T _{stg}	-65	150	°C
Moisture Sensitivity Level	MSL		1	

Caution! ESD Sensitive Device.

Exceeding Absolute Maximum Rating conditions may cause permanent damage.

Note: For additional information, please refer to Manufacturing Note MN-001 — Package and Manufacturing Information.

All Guerrilla RF products are provided in RoHS compliant lead (Pb)-free packaging requiring no exemptions. Additional information for this topic can be found at this link - *Environmental and Restricted Substance Statement Library*.

Recommended Operating Conditions

		5	Specification			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Supply Voltage	V _{DD}	3	5	6	V	
Operating Temperature (Package Heat Sink)	T _{PKG HEAT SINK}	-40		105	°C	
RF Frequency Range	F _{RF}	0.1		2.2	GHz	Typical Application Schematic Using the 0.7 to 0.96 GHz Tuning Set (note 1) .
RF_IN Port Impedance	Z _{RFIN}		50		Ω	Single Ended with 2-element Match.
RF_OUT Port Impedance	Z _{rfout}		50		Ω	Single Ended with 3-element Match.

Note 1: Operation outside this range is possible, but with degraded performance of some parameters.

Nominal Operating Parameters – General

The following conditions apply unless noted otherwise: Typical Application Schematic using the 0.7 to 0.96 GHz tuning set, M1 = 5.5 k Ω , M10 = 230 Ω , M13 = 475 Ω , I_{DDQ} = 160 mA, 50 Ω system impedance, F_{TEST} = 0.83 GHz, T_{PKG HEAT SINK} = -40 to +105 °C. Typical values are at V_{DD} = 5 V, I_{DDQ} = 160 mA, T_{PKG HEAT SINK} = 25 °C. MIN/MAX specifications listed in italics are guaranteed via production test screening. All other parameters are guaranteed by design and characterization. Evaluation board losses are included within the specifications.

		Specification				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Supply Quiescent Current	IDDQ		160	190	mA	$V_{DD} = V_{ENABLE} = 5 \text{ V}, \text{ R}_{BIAS} = 5.5 \text{ k}\Omega.$
Operating Temperature Range	TPKG HEAT SINK	-40		+105	°C	Measured on Package Heat Sink.
Switching Rise Time	T _{RISE}		100		ns	
Switching Fall Time	T _{FALL}		800		ns	
Enable Current	I _{ENABLE}		0.7		mA	

Disabled Mode

Supply Current (Leakage)	IDD		100	500	μΑ	
--------------------------	-----	--	-----	-----	----	--

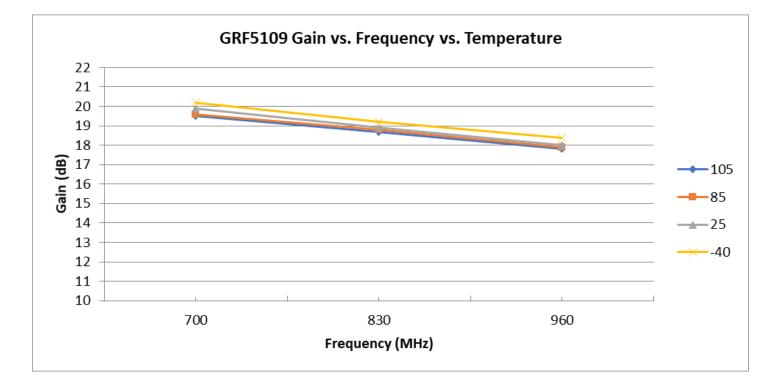
Thermal Data

	Thermal Resistance: (IR Scan Method)	οιΘ		80		°C/W	On Standard Evaluation Board (note 2).	
--	--------------------------------------	-----	--	----	--	------	--	--

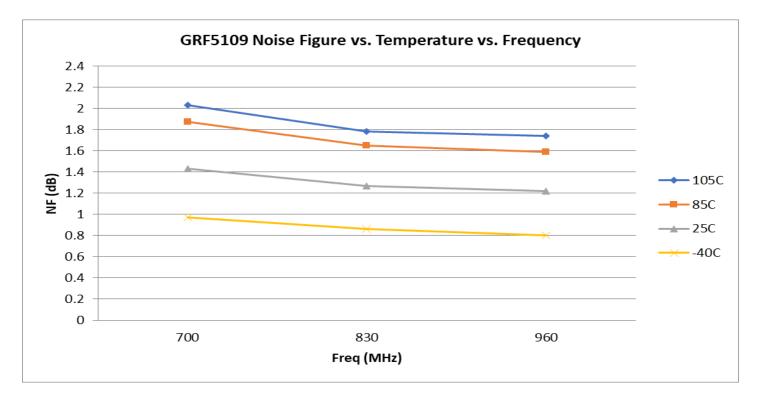
Note 2: MTTF > 10^6 hours for T_{CHANNEL} \leq 170 °C.

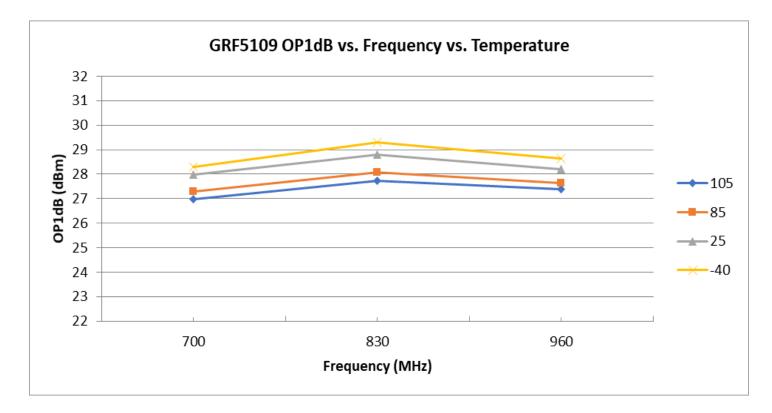
Nominal Operating Parameters – RF (0.7 to 0.96 GHz, 5 V Operation)

The following conditions apply unless noted otherwise: Typical Application Schematic using the 0.7 to 0.96 GHz tuning set, M1 = 5.5 k Ω , M10 = 230 Ω , M13 = 475 Ω , I_{DDQ} = 160 mA, 50 Ω system impedance, F_{TEST} = 0.83 GHz, T_{PKG HEAT SINK} = -40 to +105 °C. Typical values are at V_{DD} = 5 V, I_{DDQ} = 160 mA, T_{PKG HEAT SINK} = 25 °C. MIN/MAX specifications listed in italics are guaranteed via production test screening. All other parameters are guaranteed by design and characterization. Evaluation board losses are included within the specifications.

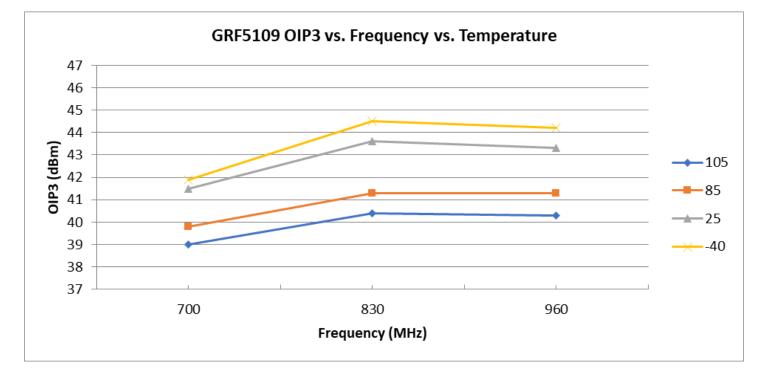

			Specification				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Small Signal Gain	S21	18	19		dB	$F_{RF} = 0.7$ to 0.96 GHz.	
Input Return Loss	S11		>8		dB	$F_{RF} = 0.7$ to 0.96 GHz.	
Output Return Loss	S22		>15		dB	$F_{RF} = 0.7$ to 0.96 GHz.	
Reverse Isolation	S12		>26		dB	$F_{RF} = 0.7$ to 0.96 GHz.	
Evaluation Board Noise Figure	NF		1.3		dB		
Output 3rd Order Intercept	OIP3		43.5		dBm		
Output 1 dB Compression Power	OP1dB	26.8	28.5		dBm		

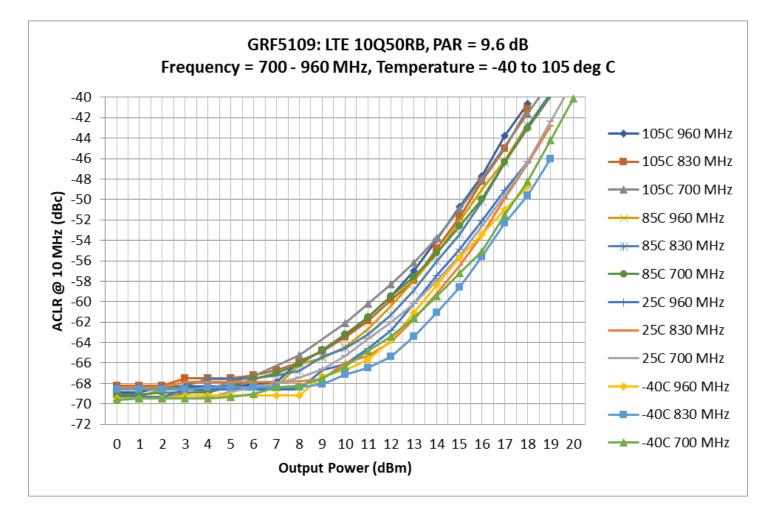
Typical Operating Curve Conditions


The following conditions apply unless noted otherwise: Typical Application Schematic using the 0.7 to 0.96 GHz tuning set, M1 = 5.5 k Ω , M10 = 230 Ω , M13 = 475 Ω , I_{DDQ} = 160 mA, 50 Ω system impedance, F_{TEST} = 0.83 GHz, T_{PKG HEAT SINK} = -40 to +105 °C. Evaluation board losses are included within the plots.

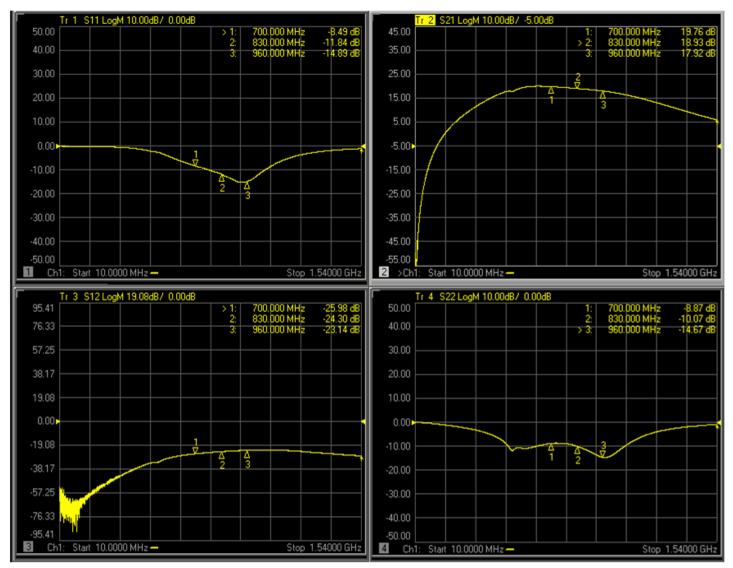


GRF5109 Typical Operating Curves: *0.7 to 0.96 GHz Tune*



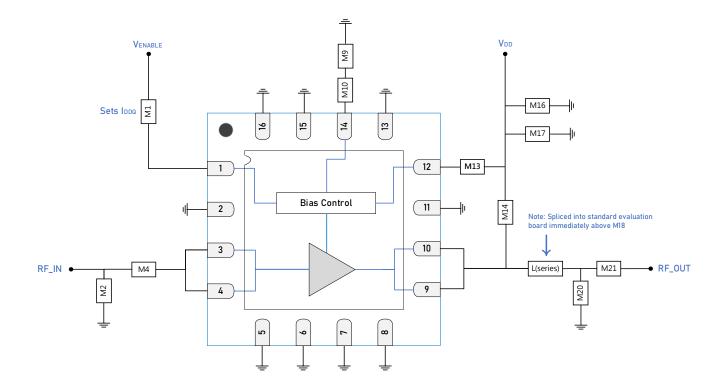

GRF5109 28.5 dBm Power-LNA[™] 0.1 to 2.2 GHz

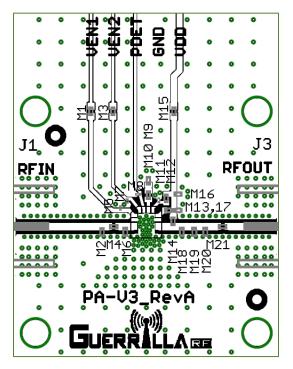
GRF5109 Typical Operating Curves: *0.7 to 0.96 GHz Tune*



GRF5109 Typical Operating Curves: 0.7 to 0.96 GHz Tune

GRF5109 Typical Operating Curves: S-Parameters (0.7 to 0.96 GHz Tune)

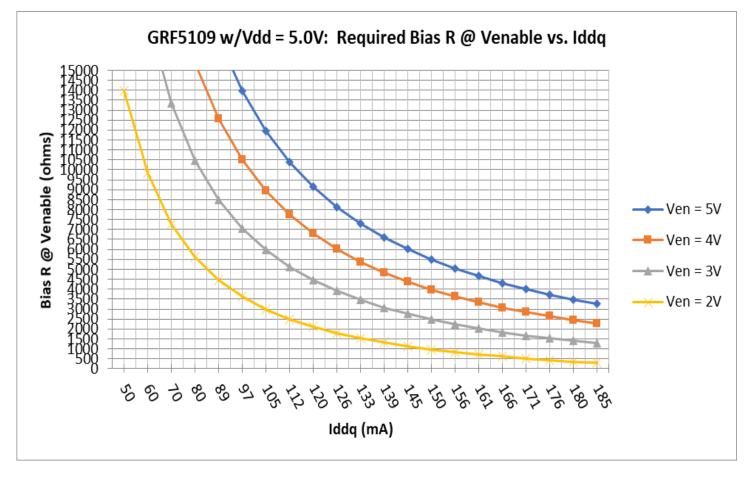



GRF5109 Typical Operating Curves: Stability Mu (0.7 to 0.96 GHz Tune)

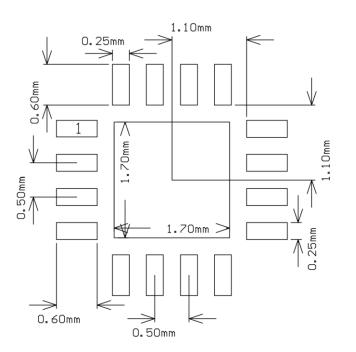
Note: Mu factor ≥ 1.0 implies unconditional stability

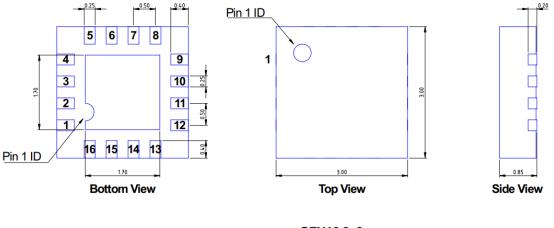
GRF5109 Standard Test Schematic

GRF5109 Evaluation Board Assembly Diagram



Component	Туре	Manufacturer	Family	Value	Package Size	Substitution
M1 (See Curves)	Resistor	Various	5%	Sets IDDQ	0402	ok
M2	Inductor: High Q	Coilcraft	HP	5.1 nH	0402	ok
M4	Capacitor: High Q	Murata	GJM	12.0 pF	0402	ok
M9	Inductor	Murata	LQG	39 nH	0402	ok
M10	Resistor	Various	5%	230 Ω	0402	ok
M13	Resistor	Various	5%	475 Ω	0402	ok
M14	Inductor: High Q	Coilcraft	HP	18 nH	0402	ok
M16	Capacitor	Murata	GRM	0.1 μF	0402	ok
M17	Capacitor	Murata	GRM	100 pF	0402	ok
M20	Capacitor	Murata	GJM	5.1 pF	0402	ok
M21	Capacitor	Murata	GJM	39 pF	0402	ok
L(series)	Inductor: High Q	Coilcraft	HP	3.3 nH	0402	ok
Evaluation Board	PA-V3_RevA					


GRF5109 Evaluation Board Assembly Diagram Reference: 0.7 to 0.96 GHz Tune

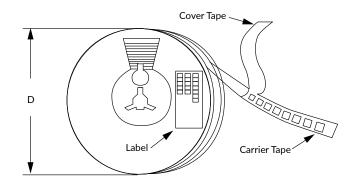

GRF5109 Bias Resistor Selection Curves

3 x 3 mm QFN-16 Suggested PCB Footprint (Top View)

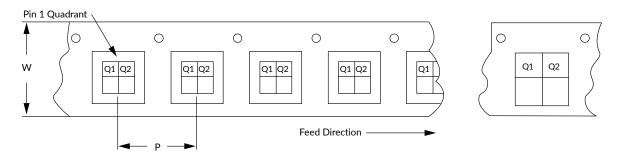
QFN16 3x3mm Dimensions in millimeters

GRF5109 28.5 dBm Power-LNA[™] 0.1 to 2.2 GHz

Package Marking Diagram


- Line 1: "XXXX" = Device PART NUMBER.
- Line 2: "YY" = YEAR. "WW" = WORK WEEK the Device was assembled.

Tape and Reel Information


Guerrilla RF's tape and reel specification complies with Electronics Industries Association (EIA) standards for "Embossed Carrier Tape of Surface Mount Components for Automatic Handling" (reference EIA-481). See the following page for the Tape and Reel Specification and Device Package Information table, which includes units per reel.

Devices are loaded with pins down into the carrier pocket with protective cover tape and reeled onto a plastic reel. Each reel is packaged in a cardboard box. There are product labels on the reel, the protective ESD bag and the outside surface of the box.

For the Tape and Reel Reference Table, please refer to: https://www.guerrilla-rf.com/prodFiles/Manufacturing/MN001.pdf

Tape and Reel Packaging with Reel Diameter Noted (D)

Carrier Tape Width (W), Pitch (P), Feed Direction and Pin 1 Quadrant Information

Revision History

Revision Date	Description of Change
March 7, 2022	Updated to New Format. Updated Package Marking Diagram. Changed Revision from "Released" to "Release A".
March 18, 2022	Raised Supply Current (Leakage) "Max" from 150µA to 500µA. Raised Supply Current (Leakage) "Typical" from 30µA to 100µA.
March 24, 2023	Lowered lenable current typical value from 2.0 mA to 0.7 mA.

Data Sheet Classifications

Data Sheet Status	Notes
Advance	S-parameter and NF data based on EM simulations for the fully packaged device using foundry-supplied transistor S-parameters. Linearity estimates based on device size, bias condition and experience with related devices.
Preliminary	All data based on evaluation board measurements taken within the Guerrilla RF Applications Lab. Any MIN/MAX limits represented within the data sheet are based solely on <i>estimated</i> part-to-part variations and process spreads. All parametric values are subject to change pending the collection of additional data.
Release Ø	All data based on measurements taken with <i>production-released</i> material. TYP values are based on a combination of ATE and bench-level measurements, with MIN/MAX limits defined using <i>modelled estimates</i> that account for part-to-part variations and expected process spreads. Although unlikely, future refinements to the TYP/MIN/MAX values may be in order as multiple lots are processed through the factory.
Release A-Z	All data based on measurements taken with production-released material <i>derived from multiple lots which have been fabricated over an extended period of time</i> . MIN/MAX limits may be refined over previous releases as more statistically significant data is collected to account for process spreads.

Information in this data sheet is specific to the Guerrilla RF, Inc. ("Guerrilla RF") product identified.

This data sheet, including the information contained in it, is provided by Guerrilla RF as a service to its customers and may be used for informational purposes only by the customer. Guerrilla RF assumes no responsibility for errors or omissions on this data sheet or the information contained herein. Information provided is believed to be accurate and reliable, however, no responsibility is assumed by Guerrilla RF for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. Guerrilla RF assumes no liability for any data sheet, data sheet information, materials, products, product information, or other information provided hereunder, including the sale, distribution, reproduction or use of Guerrilla RF products, information or materials.

No license, whether express, implied, by estoppel, by implication or otherwise is granted by this data sheet for any intellectual property of Guerrilla RF, or any third party, including without limitation, patents, patent rights, copyrights, trademarks and trade secrets. All rights are reserved by Guerrilla RF.

All information herein, products, product information, data sheets, and data sheet information are subject to change and availability without notice. Guerrilla RF reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice. Guerrilla RF may further change its data sheet, product information, documentation, products, services, specifications or product descriptions at any time, without notice. Guerrilla RF makes no commitment to update any materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

GUERRILLA RF INFORMATION, PRODUCTS, PRODUCT INFORMATION, DATA SHEETS AND DATA SHEET INFORMATION ARE PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. GUERRILLA RF DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. GUERRILLA RF SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Customers are solely responsible for their use of Guerrilla RF products in the Customer's products and applications or in ways which deviate from Guerrilla RF's published specifications, either intentionally or as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Guerrilla RF assumes no liability or responsibility for applications assistance, customer product design, or damage to any equipment resulting from the use of Guerrilla RF products outside of stated published specifications or parameters.