

DATA SHEET

THICK FILM CHIP RESISTORS

AUTOMOTIVE GRADE

AC series

$\pm 5\%$, $\pm 1\%$, $\pm 0.5\%$

Sizes 0201/0402/0603/0805/1206/
1210/1218/2010/2512

RoHS compliant & Halogen free

YAGEO

Product specification – January 04, 2023 V.10

MARKING

AC0201 / AC0402

No marking

Fig. 1

AC0603 / AC0805 / AC1206 / AC1210 / AC2010 / AC2512

E-24 series: 3 digits, $\pm 5\%$

First two digits for significant figure and 3rd digit for number of zeros

Fig. 2 Value=10 K Ω

AC0603

E-24 series: 3 digits, $\pm 1\% & \pm 0.5\%$

One short bar under marking letter

Fig. 3 Value = 24 Ω

E-96 series: 3 digits, $\pm 1\% & \pm 0.5\%$

First two digits for E-96 marking rule and 3rd letter for number of zeros

Fig. 4 Value = 12.4 K Ω

AC0805 / AC1206 / AC1210 / AC2010 / AC2512

Both E-24 and E-96 series: 4 digits, $\pm 1\% & \pm 0.5\%$

First three digits for significant figure and 4th digit for number of zeros

Fig. 5 Value = 10 K Ω

AC1218

E-24 series: 3 digits, $\pm 5\%$

First two digits for significant figure and 3rd digit for number of zeros

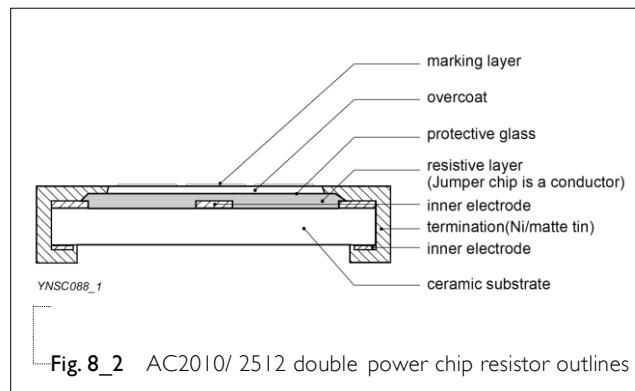
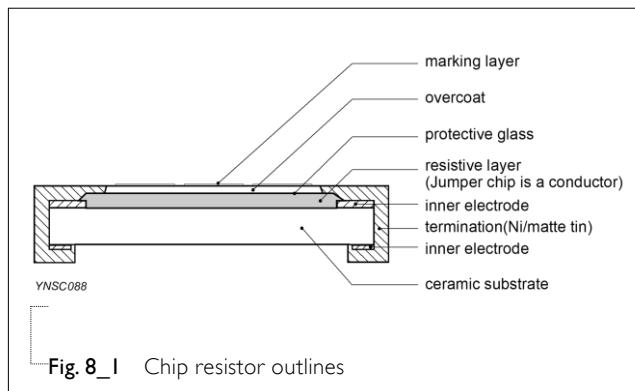
Fig. 6 Value = 10 K Ω

Both E-24 and E-96 series: 4 digits, $\pm 1\% & \pm 0.5\%$

First three digits for significant figure and 4th digit for number of zeros

Fig. 7 Value = 10 K Ω

NOTE



For further marking information, please refer to data sheet "Chip resistors marking". Marking of AC series is the same as RC series.

CONSTRUCTION

The resistors are constructed on top of an automotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a protective glass.

The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added, as shown in Fig.8.


OUTLINES

DIMENSIONS

Table I For outlines, please refer to Fig. 9

TYPE	L (mm)	W (mm)	H (mm)	l_1 (mm)	l_2 (mm)
AC0201	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.12 ± 0.05	0.15 ± 0.05
AC0402	1.00 ± 0.05	0.50 ± 0.05	0.32 ± 0.05	0.20 ± 0.10	0.25 ± 0.10
AC0603	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.25 ± 0.15	0.25 ± 0.15
AC0805	2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.35 ± 0.20
AC1206	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.45 ± 0.20
AC1210	3.10 ± 0.10	2.60 ± 0.15	0.55 ± 0.10	0.45 ± 0.15	0.50 ± 0.20
AC1218	3.10 ± 0.10	4.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
AC2010	5.00 ± 0.10	2.50 ± 0.15	0.55 ± 0.10	0.55 ± 0.15	0.55 ± 0.20
AC2512	6.35 ± 0.10	3.10 ± 0.15	0.55 ± 0.10	0.60 ± 0.20	0.60 ± 0.20

ELECTRICAL CHARACTERISTICS

Table 2

TYPE	POWER	CHARACTERISTICS					
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient
AC0201	1/20 W	-55 °C to 155 °C	25V	50V	50V	5% (E24)	$1\Omega \leq R \leq 10\Omega$ Rated Current
						$1\Omega \leq R \leq 10M\Omega$	-100/+350ppm°C 0.5A
						1% (E24/E96)	$10\Omega < R \leq 10M\Omega$ Maximum
	1/16 W	-55 °C to 155 °C	50V	100V	100V	$1\Omega \leq R \leq 10M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$ Current
						0.5% (E24/E96)	1.0A
						$10\Omega \leq R \leq 1M\Omega$	Jumper<50mΩ
AC0402	1/16 W	-55 °C to 155 °C	50V	100V	100V	5% (E24)	$1\Omega \leq R \leq 10\Omega$ Rated Current
						$1\Omega \leq R \leq 22M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$ 1A
						0.5%, 1% (E24/E96)	$10\Omega < R \leq 10M\Omega$ Maximum
	1/8 W	-55 °C to 155 °C	75V	100V	100V	$1\Omega \leq R \leq 10M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$ Current
						Jumper<50mΩ	$10M\Omega < R \leq 22M\Omega$ 2A
							$\pm 200\text{ppm}^\circ\text{C}$
AC0603	1/10 W	-55 °C to 155 °C	75V	150V	150V	5% (E24)	$1\Omega \leq R < 10\Omega$ Rated Current
						$1\Omega \leq R \leq 22M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$ 1A
						0.5%, 1% (E24/E96)	$10\Omega \leq R \leq 10M\Omega$ Maximum
	1/5 W	-55 °C to 155 °C	75V	150V	150V	$1\Omega \leq R \leq 10M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$ Current
						Jumper<50mΩ	$10M\Omega < R \leq 22M\Omega$ 2A
							$\pm 200\text{ppm}^\circ\text{C}$

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AC0805	1/8 W	-55 °C to 155 °C	150V	300V	300V	5% (E24)	$ R \leq 10\Omega$	Rated Current
						$ R \leq 22M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$	2A
						0.5%, 1% (E24/E96)	$10\Omega \leq R \leq 10M\Omega$	Maximum Current
						$ R \leq 10M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$	
AC1206	1/4 W	-55 °C to 155 °C	150V	300V	300V	5% (E24)	$ R \leq 10\Omega$	
						$ R \leq 10M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$	
						0.5%, 1% (E24/E96)	$10\Omega \leq R \leq 10M\Omega$	
						$ R \leq 10M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$	
AC1210	1/2 W	-55 °C to 155 °C	200V	400V	500V	5% (E24)	$ R \leq 10\Omega$	Rated Current
						$ R \leq 22M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$	2A
						0.5%, 1% (E24/E96)	$10\Omega \leq R \leq 10M\Omega$	Maximum Current
						$ R \leq 10M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$	
AC1210	1/2 W	-55 °C to 155 °C	200V	500V	500V	5% (E24)	$ R \leq 10\Omega$	Rated Current
						$ R \leq 22M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$	2A
						0.5%, 1% (E24/E96)	$10\Omega \leq R \leq 10M\Omega$	Maximum Current
						$ R \leq 10M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$	
AC1210	1 W	-55 °C to 155 °C	200V	500V	500V	5% (E24)	$ R \leq 10\Omega$	
						$ R \leq 10M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$	
						0.5%, 1% (E24/E96)	$10\Omega \leq R \leq 10M\Omega$	
						$ R \leq 10M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$	

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AC1218	1W	-55 °C to 155 °C	200V	500V	500V	5% (E24)	$ R \leq 10\Omega$	Rated Current
						$ R \leq 1M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$	6A
	1.5W	-55 °C to 155 °C	200V	500V	500V	0.5%, 1% (E24/E96)	$ R \leq 1M\Omega$	Maximum Current
						$ R \leq 1M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$	10A
AC2010	3/4W	-55 °C to 155 °C	200V	500V	500V	5% (E24)	$ R \leq 10\Omega$	Rated Current
						$ R \leq 22M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$	2A
	1.25W	-55 °C to 155 °C	200V	500V	500V	0.5%, 1% (E24/E96)	$ R \leq 10M\Omega$	Maximum Current
						$ R \leq 10M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$	10A
AC2512	1W	-55 °C to 155 °C	200V	500V	500V	5% (E24)	$ R \leq 10\Omega$	Rated Current
						$ R \leq 22M\Omega$	$\pm 200\text{ppm}^\circ\text{C}$	2A
	2W	-55 °C to 155 °C	200V	500V	500V	0.5%, 1% (E24/E96)	$ R \leq 10M\Omega$	Maximum Current
						$ R \leq 10M\Omega$	$\pm 100\text{ppm}^\circ\text{C}$	10A

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AC0201	AC0402	AC0603	AC0805	AC1206	AC1210	AC1218	AC2010	AC2512
Paper taping reel (R)	7" (178 mm)	10,000	10,000	5,000	5,000	5,000	5,000	---	---	---
	10" (254 mm)	20,000	20,000	10,000	10,000	10,000	10,000	---	---	---
	13" (330 mm)	50,000	50,000	20,000	20,000	20,000	20,000	---	---	---
Embossed taping reel (K)	7" (178 mm)	---	---	---	---	---	---	4,000	4,000	4,000
	13" (330 mm)	---	---	---	---	---	---	---	16,000	---

NOTE

I. For paper/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION**OPERATING TEMPERATURE RANGE**

Range: -55°C to $+155^{\circ}\text{C}$

POWER RATING

Each type rated power at 70°C :

AC0201=1/20W (0.05W)

AC0402=1/16W (0.0625W); 1/8W (0.125W)

AC0603=1/10W (0.1W); 1/5W (0.2W)

AC0805=1/8W (0.125W); 1/4 W(0.25 W)

AC1206=1/4W (0.25W); 1/2 W (0.5 W)

AC1210=1/2W (0.5W); 1W

AC1218=1W; 1.5W

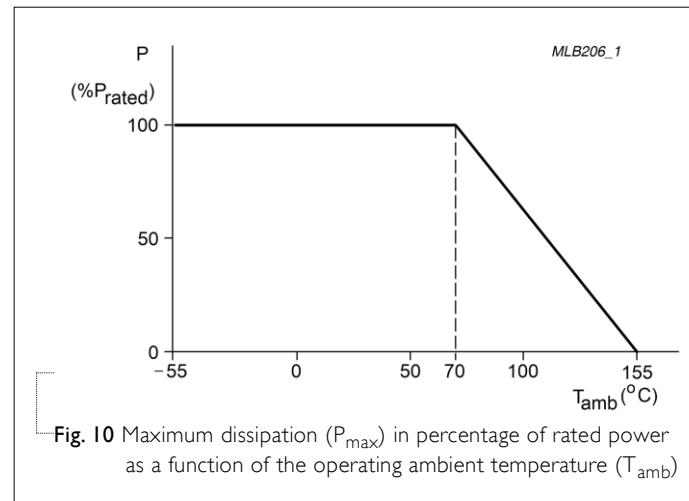
AC2010=3/4W (0.75W); 1.25W

AC2512=1 W; 2W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{P \times R}$$


Or Maximum working voltage whichever is less

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

R = Resistance value (Ω)

TESTS AND REQUIREMENTS**Table 4** Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at $T_A = 155$ °C, unpowered	$\pm(1.0\%+0.05\Omega)$ for D/F tol $\pm(2.0\%+0.05\Omega)$ for J tol <50 mΩ for Jumper
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	$\pm(0.5\%+0.05\Omega)$ for D/F tol $\pm(2.0\%+0.05\Omega)$ for J tol <100 mΩ for Jumper
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	1,000 hours; 85 °C / 85% RH 10% of operating power Measurement at 24 ± 4 hours after test conclusion.	$\pm(1.0\%+0.05\Omega)$ for D/F tol $\pm(3.0\%+0.05\Omega)$ for J tol <100 mΩ for Jumper
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm(1.0\%+0.05\Omega)$ for D/F tol $\pm(3.0\%+0.05\Omega)$ for J tol <100 mΩ for Jumper
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260 ± 5 °C, 10 ± 1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm(0.5\%+0.05\Omega)$ for D/F tol $\pm(1.0\%+0.05\Omega)$ for J tol <50 mΩ for Jumper No visible damage
Thermal Shock	MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	$\pm(0.5\%+0.05\Omega)$ for D/F tol $\pm(1.0\%+0.05\Omega)$ for J tol <50 mΩ for Jumper
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, $I_{\text{pos.}} + I_{\text{neg.}}$ discharges 0201: 500V 0402/0603: 1KV 0805 and above: 2KV	$\pm(3.0\%+0.05\Omega)$ <50 mΩ for Jumper

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test 18 J-STD-002	Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds. (c) Method D, steam aging 8 hours, dipping at 260±3 °C for 30±0.5 seconds.	Well tinned ($\geq 95\%$ covered) No visible damage
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 100mm x 40mm glass epoxy resin PCB (FR4) Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60 seconds	$\pm(1.0\%+0.05\Omega)$ <50 mΩ for Jumper
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/-55 °C and +25/+125 °C Formula: $T.C.R = \frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/}^{\circ}\text{C)}$ Where $t_1 = +25$ °C or specified room temperature $t_2 = -55$ °C or +125 °C test temperature R_1 = resistance at reference temperature in ohms R_2 = resistance at test temperature in ohms	Refer to table 2
Short Time Overload	IEC60115-1 8.1	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	$\pm(1.0\%+0.05\Omega)$ for D/F tol $\pm(2.0\%+0.05\Omega)$ for J tol <50 mΩ for Jumper
FOS	ASTM-B-809-95	Sulfur (saturated vapor) 500 hours, 60±2°C, unpowered	$\pm(1.0\%+0.05\Omega)$

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 10	Jan. 04, 2023	-	- 10ohm TCR upgrade to 100ppm, for 0603~2512 normal power and 0402~2512 double power.
Version 9	Aug. 02, 2022	-	- I2 dimension updated, for size 1206, size 2010, size 2512.
Version 8	Mar. 19, 2021	-	- Upgrade the working voltage of 0402 double power to 75V
Version 7	July 10, 2017	-	- Add "3W" part number coding for 13" Reel & double power
Version 6	May 31, 2017	-	- Add 10" packing
Version 5	Dec. 07, 2015	-	- Add in AC double power
Version 4	May 25, 2015	-	- Remove 7D packing - Extend resistance range - Add in AC0201 - Update FOS test and requirements
Version 3	Feb 13, 2014	-	- Feature description updated - add $\pm 0.5\%$ - delete 10" taping reel
Version 2	Feb. 10, 2012	-	- Jumper criteria added - AC1218 marking and outline figure updated
Version 1	Feb. 01, 2011	-	- Case size 1210, 1218, 2010, 2512 extended - Test method and procedure updated - Packing style of 7D added
Version 0	Nov. 10, 2010	-	- First issue of this specification

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

YAGEO statements regarding the suitability of products for certain types of applications are based on YAGEO's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of YAGEO nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether YAGEO products are the correct products for their application or use. In addition, unpredictable and isolated cases of product failure may still occur, therefore, customer application or use of YAGEO products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

YAGEO products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of YAGEO products could result in personal injury or death. Customers using or selling YAGEO products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify YAGEO and hold YAGEO harmless.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.