

3-Phase Half-Bridge Gate Driver

Features

- Three floating high-side drivers in bootstrap operation to 500V/600V
- 420mA source / 750mA sink output current capability
- Logic input 3.3V capability
- Internal deadtime of 315ns to protect MOSFETs
- Matched prop delay time maximum of 50ns
- Outputs in phase with inputs
- Schmitt triggered logic inputs
- Cross conduction prevention logic
- Undervoltage lockout for all channels
- Extended temperature range: -40°C to +125°C
- Space saving SOIC-20 package

Applications

- 3-Phase Motor Inverter Driver
- White Goods Air Conditioner, Washing Machine, Refrigerator
- Industrial Motor Inverter Power Tools, Robotics
- General Purpose 3-Phase Inverter

Description

The TF2366M/TF2388M is a three-phase gate driver IC designed for high voltage three-phase applications, driving N-channel MOSFETs and IGBTs in a half-bridge configuration. TF Semiconductor's high voltage process enables the TF2388M high sides to switch to 600V in a bootstrap operation, and the TF2366M can switch to 500V.

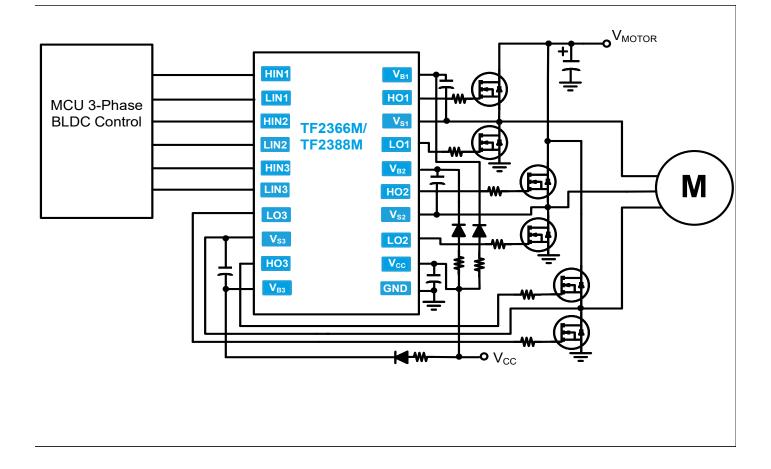
The TF2366M/TF2388M logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) to interface easily with controlling devices and are enabled low to better function in high noise environments. The driver outputs feature high pulse current buffers designed for minimum driver cross conduction.

The TF2366M/TF2388M offers numerous protection functions. A shoot-through protection logic prevents both outputs being high with both inputs high (fault state), an undervoltage lockout for V_{cc} shuts down all drivers through an internal fault control, and a UVLO for V_{BS} shuts down the respective high side output. The TF2366M/TF2388M is offered in SOIC 20 package and operates over an extended -40 °C to +125 °C temperature range.

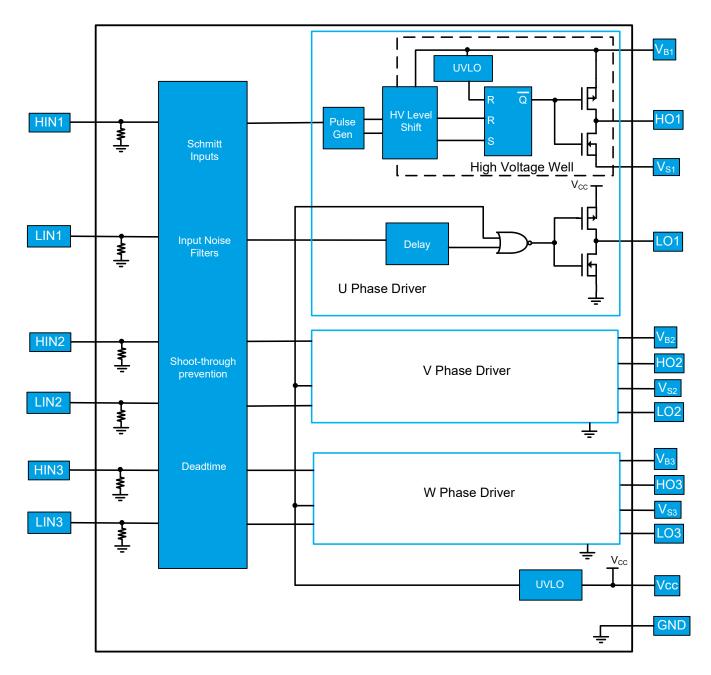
Ordering Information

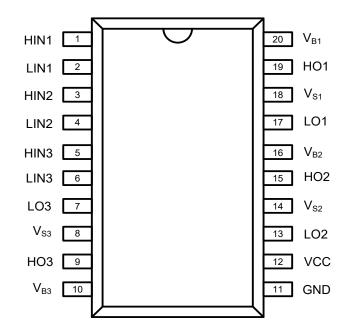
		Ye	earYear WeekWeek
PART NUMBER	PACKAGE	PACK / Qty	MARK
TF2366M-TGU	SOIC-20	Tube / 35	YYWW TF2366M
TF2366M-TGH	SOIC-20	T&R / 1500	Lot ID
TF2388M-TGU	SOIC-20	Tube / 35	YYWW TE2388M
TF2388M-TGH	SOIC-20	T&R / 1500	Lot ID

SOIC-20



Typical Application





Functional Block Diagram

Top View: SOIC-20

Pin Descriptions

tfss TF Semiconductor Solutions

Pin Diagrams

PIN NAME	PIN NUMBER	PIN DESCRIPTION
HIN1, HIN2, HIN3	1, 3, 5	Logic input for high-side gate driver output, in phase with HO.
LIN1, LIN2, LIN3	2, 4, 6	Logic input for low-side gate driver output, in phase with LO.
LO3, LO2, LO1	7, 13, 17	Low-side gate driver output
V ₅₃ ,V ₅₂ ,V ₅₁	8, 14, 18	High-side floating supply return
HO3, HO2, HO1	9, 15, 19	High-side gate driver output
V _{B3} ,V _{B2} ,V _{B1}	10, 16, 20	High-side floating supply
GND	11	Low-side driver and logic return
VCC	12	Low-side and logic fixed supply

Absolute Maximum Ratings (NOTE1)

$\rm V_{\rm \scriptscriptstyle B}$ - High-side floating supply voltage (TF2366M)0.3V to +524V
V_{B} - High-side floating supply voltage (TF2388M)0.3V to +624V
V_s - High-side floating supply offset voltage V_B -24V to V_B +0.3V
V_{HO} -High-sidefloating output voltageV _s -0.3VtoV _B +0.3V
V _{LO} - Low-side output voltage0.3V to V _{CC} +0.3V
dV _s /dt-Offset supply voltage transient50 V/ns
V _{cc} - Low-side fixed supply voltage0.3V to +24V
V _{IN} Logic input voltage(HINandLIN)0.3Vto5.5V

NOTE1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3-Phase Half-Bridge Gate Driver

P _D - Package power dissipation at T _A =25°C SOIC-201.88W
SOIC-20 Thermal Resistance (N0TE2) θ _{JA}
$T_{\rm J}$ - Junction operating temperature+150 °C $T_{\rm L}$ - Lead Temperature (soldering, 10 seconds)+300 °C $T_{\rm stg}$ - Storage temerature55 to 150 °C

NOTE2 When mounted on a standard JEDEC 2-layer FR-4 board.

Recommended Operating Conditions

Symbol	ol Parameter		MIN	MAX	Unit	
V _B	High side floating supply absolute voltage		V _s + 10	V _s + 20	V	
M		TF2366M		500		
Vs	High side floating supply offset voltage	TF2388M	NOTE3	600	V	
V _{HO}	High side floating output voltage		Vs	V _B	V	
V _{cc}	Low side fixed supply voltage		10	20	V	
V _{LO}	Low side output voltage		СОМ	V _{cc}	V	
V _{IN}	Logic input voltage (HIN and LIN)		0	5	V	
T _A	Ambient temperature		-40	125	°C	

NOTE3 Logic operational for VS of -5V to +500V for TF2366M and +600V for TF2388M.

3-Phase Half-Bridge Gate Driver

DC Electrical Characteristics (NOTE4)

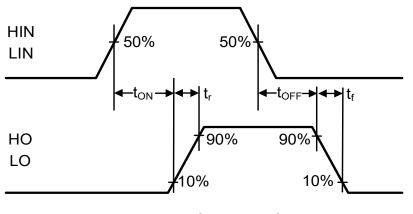
 $V_{\text{BIAS}}(V_{\text{CC}},V_{\text{BS}}) = 15V, T_{\text{A}} = 25\ ^{\circ}\text{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	MIN	ТҮР	MAX	Unit	
V _{IH}	Logic "0" input voltage		2.4				
V _{IL}	Logic "1" input voltage	- NOTE5			0.8	1	
V _{OH}	High level output voltage, V _{BIAS} - V _O	$I_0 = 2mA$		0.2	0.5		
V _{OL}	Low level output voltage, V _o	$I_0 = 2mA$		0.07	0.2		
I _{LK}	Offset supply leakage current	VB=VS=500V (TF2366M) VB=VS=600V (TF2388M)			10		
I _{BSQ}	Quiescent V _{BS} supply current	$V_{IN} = 0V \text{ or } 5V$		50	80		
I _{BSO}	Operating V _{BS} supply current	fs = 20khz		400			
I _{ccq}	Quiescent V _{cc} supply current	$V_{IN} = 0V \text{ or } 5V$		230	330	μΑ	
I _{cco}	Operating V _{cc} supply current	fs = 20khz		500			
I _{IN+}	Logic "1" input bias current	V _{IN} = 5V		25	80		
I _{IN-}	Logic "0" input bias current	V _{IN} = 0V			2		
R _{IN}	Input pull-down resistance			200		kΩ	
V _{BSUV+} V _{CCUV+}	V _{BS} and V _{CC} supply under-voltage positive going threshold		7.1	8.5	9.9		
V _{bsuv-} V _{ccuv-}	$V_{_{BS}}$ and $V_{_{CC}}$ supply under-voltage negative going threshold		6.7	8.1	9.5	V	
I _{O+}	Output high short circuit pulsed current	$V_{o} = 0V$, PW $\leq 10 \ \mu s$	270	420		mA	
I ₀₋	Output low short circuit pulsed current	$V_0 = 15V$, PW $\leq 10 \ \mu s$	600	750		1	

NOTE4 The V_{IIV} and I_{IIV} parameters are referenced to V_{ss} and are applicable to all six channels (HIN1,2,3 and LIN1,2,3). The V_0 and I_0 parameters are applicable to the outputs (H01,2,3 and L01,2,3 a

NOTES For optimal operation, it is recommended that the input pulse (to HINx and LINx) should have an amplitude of 2.4V minimum with a pulse width of 600ns minimum.

Final


3-Phase Half-Bridge Gate Driver

AC Electrical Characteristics

 $V_{_{BIAS}}(V_{_{CC'}}V_{_{BS}})$ = 15V, $C_{_L}$ = 1000pF, and $T_{_A}$ = 25 °C , unless otherwise specified.

Symbol	Parameter	Conditions	MIN	ТҮР	МАХ	Unit
t _{on}	Turn-on propogation delay	$V_s = 0V$	70	120	170	
t _{off}	Turn-off propogation delay	$V_s = 0V$	70	120	170	ns
t _r	Turn-on rise time			45	75	
t _f	Turn-off fall time			25	40	
t _{DM}	Delay matching				50	ns
t _{DT}	Deadtime		200	315	430	ns
t _{DTM}	Deadtime matching				50	ns

Timing Waveforms

 $t_{DM} = |t_{ON} - t_{OFF}|$

Figure 1. Switching Time Waveform Definitions

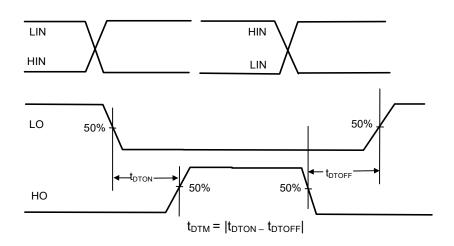
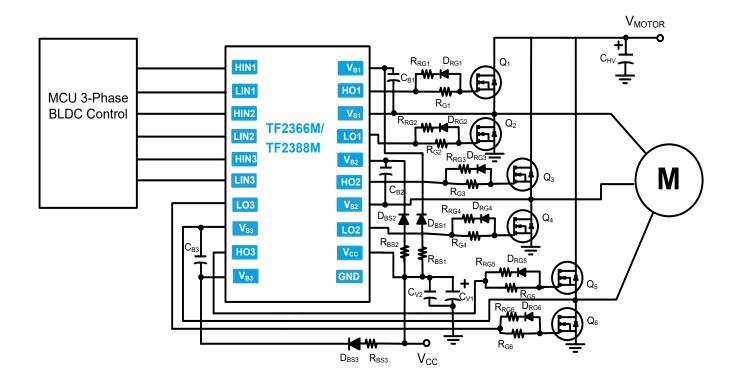
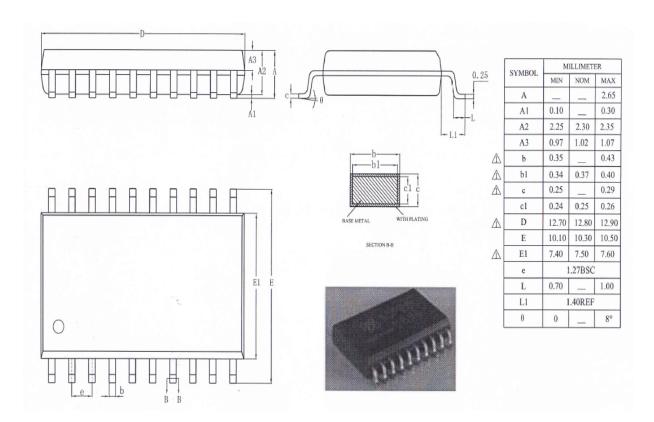



Figure 2. Deadtime Waveform Definitions

RRG1 - RRG6 values are typically between 0Ω and 10Ω , exact value decided by MOSFET junction capacitance and drive current of gate driver; 10Ω is used in this example.

RG1 - RG6 values are typically between 20Ω and 100Ω , exact value decided by MOSFET junction capacitance and drive current of gate driver; 50Ω is used in this example.


RBS1 - RBS3 values are typically between 3Ω and 20Ω , exact value depending on bootstrap capacitor value and amount of current limiting required for bootstrap capacitor charging; 10Ω is used in this example. Also DBS1 - DBS3 should be an ultra fast diode of 1A rating minimum and voltage rating greater than system operating voltage.

It is recommended that the input pulse (to HINx and LINx) should have an minimum amplitude of 2.4V and a minimum pulse width of 600ns.

TF Semiconductor Solutions Package Dimensions (SOIC-20)

3-Phase Half-Bridge Gate Driver

Final

3-Phase Half-Bridge Gate Driver

Rev.	Change	Owner	Date
1.0	First release, final datasheet	Keith Spaulding	6/22/2022

Important Notice

TF Semiconductor Solutions (TFSS) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TFSS PRODUCTS ARE SPECIFICALLY DESIGNATED BY TFSS FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF TFSS PRODUCTS WHICH TFSS HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

TFSS assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using TFSS products.

Resale of TFSS products or services with statements different from or beyond the parameters stated by TFSS for that product or service voids all express and any implied warranties for the associated TFSS product or service. TFSS is not responsible or liable for any such statements.

©2022 TFSS. All Rights Reserved. Information and data in this document are owned by TFSS wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from TFSS.

For additional information please contact support@tfsemi.com or visit www.tfsemi.com.