
明德扬 mdyFmcAd8488 子板说明书

修订日期: 2022/04/2 版本: v2.0

目录

	明很	譽扬 mdyFmcAd8488 子板说明书	1
一、		明德扬 mdyFmcAd8488 子板介绍	
Ξ,		主要硬件介绍	
	1、	AD8488 芯片	
	2、	AD9244 芯片	
	3、	时钟和晶振	
	4、	FMC 接口	
	5、	传感器接口	
三、	•	测试环境	
四、		简易上板测试说明	
	1、	上板提供的测试工程功能如下:	
	2、	测试信号输入	
	3、	硬件电路连接	
	4、	工程上板	
Ŧī.、	71	大术支持	
立、 六、		更多帮助	
//>		天夕市哟	10

一、 明德扬 mdyFmcAd8488 子板介绍

mdyFmcAd8488 板卡集成了1片128 通道模拟前端芯片 Ad8488 和1片高速 ADC 芯片 AD9244,适用于医疗 x 射线、高性能数字 x 射线系统、安全扫描系统等多种应用场合。6 层板制作工艺,尺寸为68.7mm*94.92mm,板厚1.6mm。

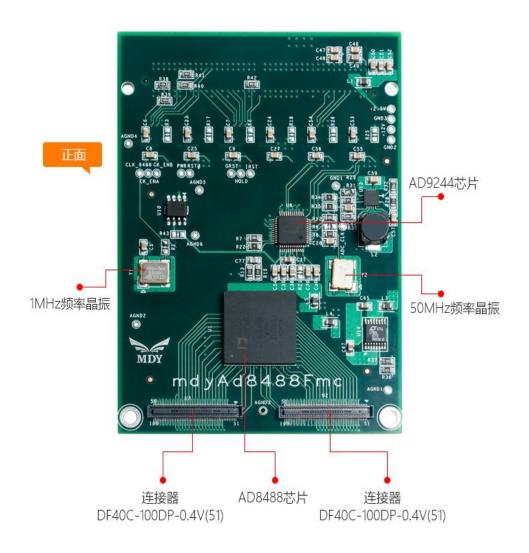


图 1.1

二、 主要硬件介绍

1、 AD8488 芯片

AD8488 是一款 128 通道模拟前端,为高性能数字 X 射线系统而设计。它的模

拟通道由一个积分器和增益可选的单端转低阻抗差分输出组成。该模拟通道将X射 线或光电二极管检波器收集的电荷转换成电压信号。通道由 CMOS 晶体管组成, 这 些晶体管采用典型高输入阻抗的 CMOS 门。该设备的积分器采用一系列可选电容值, 产生与电荷有关的电压,可适应广泛的输入电荷值。

图 2.1.1

2、 AD9244 芯片

ADI 公司的 AD9244, 是一个 14BIT, 最高采样率为 65MHz 的高速 ADC 芯片, 可专门用来处理峰峰值为 1~2V 的模拟小信号。它的输入信号和时钟信号都采用差 分输入形式,以使系统获得最好的性能。

3、 时钟和晶振

ad8488 芯片匹配 1MHz 频率晶振用于产生 ad8488 采样时钟,也可以通过取下

电阻 R2 或者电阻 R39 来调整 ad8488 采样时钟由外部连接输入。

ad9244 芯片匹配 50MHz 频率晶振用于产生 ad9244 采样时钟, 也可以通过取下 电阻 R8 或者电阻 R6 来调整 ad9244 采样时钟由外部连接输入。

4、 FMC 接口

采用标准 low-pin-count FMC 连接器 。

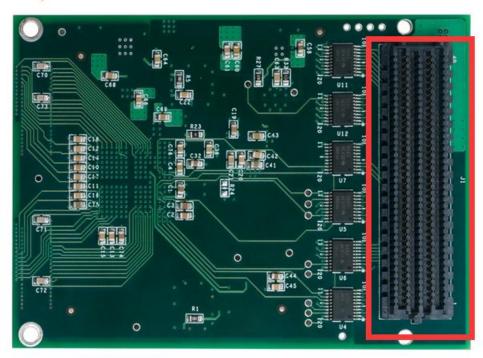


图 2.4.1

5、 传感器接口

ad8488 芯片 128 通道输入的传感器接口使用 HRS 生产的 DF40C-100DS-0.4V(51) 连接器,对接接口推荐选用 HRS 生产的 DF40C-100DP-0.4V(51)连接器。

图 2.5.1

三、 测试环境

- 1、测试工具: Vivado, mdyMp5620 开发板, mdyFmcAd8488 板卡。
- 2、信号: 信号发送器产生 0~1V 幅度的脉冲波形然后串联 10pf 电容输入 ad8488 采集通道。
- 3、时钟: 取下电阻 R2 使用 fpga 产生的时钟作为 ad8488 采集时钟, ad9244 则使用 50Mhz 晶振产生的采集时钟。
- 4、测试工程: top_mdyFmcAd8488_20220511_1555.bit、

top_mdyFmcAd8488_20220511_1555.llx

四、 简易上板测试说明

1、 上板提供的测试工程功能如下:

- 工程成功加载, led-D9 常亮;
- 拨码开关 KEY7=1, 并且 led-D11 点亮——控制将工程里的 ad9244 输出数据替代为 fpga 产生的模拟数据,否则使用 ad9244 正常采集的数据;
- 拨码开关 KEY6=1, 并且 led-D10 点亮——控制 ad8488 采集时序的配置参数使用对应 ad8488_clk=1MHz 的一组, 否则使用 ad8488_clk=11MHz 的一组;
- 拨码开关 KEY10=1, 并且 led-D12 点亮——控制 fpga 连续产生 ad8488 采集时序;
- 拨码开关 KEY11=1, ad8488 配置增益为: CF1=0.45pF (数值越小增益越大), Time Constant=1.5us (数值越大增益越大), Gain=10 (数值越大增益越大); 否则配置增益为: CF1=7.0pF, Time Constant=0.5us, Gain=2。
- 按键 KEY4 为 ad8488 采集使能——当拨码开关 KEY10=0 时,按一下 KEY4, fpga 产生一组 ad8488 采集时序; 当拨码开关 KEY10=1 时,按一下 KEY4, fpga 开始连续产生 ad8488 采集时序。

2、 测试工程接口信号列表

信号名	I/O	位宽	定义
emcClk_66M	I	1	系统时钟
rst_n	ı	1	复位信号,低电平有效
ad8488_clk	0	1	根据系统时钟和 mdyAd8488 模块配置信号
			cfg_clk_cycle 来产生的 ad8488 时钟

ad8488_ck_en	0	2	根据 ad8488_clk 来产生,ad8488_ck_en[0]对应
			ad8488 数据手册采集时序里的 CK_Ena,
			ad8488_ck_en[1]对应 CK_Enb
ad8488_cs	0	2	根据系统时钟来产生, ad8488_cs[0]对应
			ad8488 数据手册采集时序里的 CS_A,
			ad8488_cs[1]对应 CS_B
ad8488_cf1se	0	2	Ad8488 增益配置信号,对应数据手册里的
			CF1SEL[1:0]
ad8488_fsel	0	2	Ad8488 增益配置信号,对应数据手册里的
			FSEL[1:0]
ad8488_grst	0	1	根据 ad8488_clk 来产生, ad8488_grst 对应
			ad8488 数据手册采集时序里的 GRST
ad8488_gnsel	0	4	Ad8488 增益配置信号,对应数据手册里的
			GNSEL[3:0]
ad8488_hold	0	1	根据 ad8488_clk 来产生, ad8488_hold 对应
			ad8488 数据手册采集时序里的 HOLD
ad8488_pwr	0	1	根据 ad8488_clk 来产生, ad8488_pwr 对应
			ad8488 数据手册采集时序里的 PWR
ad8488_irst	0	1	根据 ad8488_clk 来产生, ad8488_irst 对应
			ad8488 数据手册采集时序里的 IRST
ad8488_rst_n	0	1	根据 ad8488_clk 来产生,ad8488_rst_n 对应
			ad8488 数据手册采集时序里的 RST
	1		

ad8488_tst_mod	0	1	高电平测试模式开启,ad8488_tst_mod 对应
			ad8488 数据手册采集时序里的 TST_MODE
ad8488_tst	0	7	测试通道编号, ad8488_tst 对应 ad8488 数据手
			册采集时序里的 TST[6:0]
ad8488_wr_n	0	1	根据系统时钟来产生, ad8488_wr_n 对应
			ad8488 数据手册采集时序里的 WR
ad9244_clk	0	1	根据系统时钟来产生的 ad9244 时钟
ad9244_otr	I	1	输入的 ad9244 采集数据溢出指示信号
ad9244_din	I	14	输入的 ad9244 采集数据
sw_in	I	4	输入拨码开关信号
			sw_in[0]对应拨码开关 KEY6, 高电平控制
			ad8488 采集时序的配置参数使用对应
			ad8488_clk=1MHz 的 — 组 , 否则使用
			ad8488_clk=11MHz 的一组;
			sw_in[1]对应拨码开关 KEY7, 高电平控制将工程
			里的 ad9244 输出数据替代为 fpga 产生的模拟
			数据,否则使用 ad9244 正常采集的数据;;
			sw_in[2]对应拨码开关 KEY10,高电平控制在一
			次按键使能产生 ad8488 采集时序后 fpga 连续
			产生 ad8488 采集时序;
			sw_in[3]对应拨码开关 KEY11,高电平 ad8488
			配 置 增 益 为 : CF1=0.45pF , Time

			Constant=1.5us, Gain=10; 否则配置增益为:
			CF1=7.0pF, Time Constant=0.5us, Gain=2。
key_enCap	I	1	输入按键信号,单独采集时按一次产生一组
			ad8488 采集时序,而连续采集时,按一次使能
			连续采集开始
sys_led	0	5	输出的 led 指示灯,高电平有效
			sys_led[0]指示工程加载完成, sys_led[4:1]对应
			sw_in[3:0]
ad9244_dout	0	14	Ad9244 输出的 ad8488 采集数据
ad9244_dout_vld	0	1	Ad9244 输出数据有效指示信号
ad9244_dout_idx	0	8	Ad9244 输出数据对应通道编号

3、 测试信号输入

fmc 子板上有四个电容 C70、C73、C71、C72,它们分别用于引出 ad8488 的 4个输入通道用于简单通道数据对齐测试,也可以根据需要将上述电容更换成别的 pf级电容对输入信号进行调整,如下图 4.2.1 所示。

但是需要注意的是,外接信号连接的位置应如图 4.2.2 所示,应使外接信号源串联电容后再给到 ad8488 的通道输入,特别是当外接信号源产生的是电压信号时,不能直接与 ad8488 通道输入相连,防止损坏 ad8488 芯片。

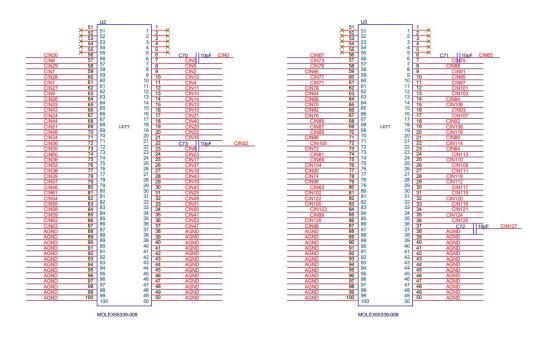


图 4.2.1



图 4.2.2

4、 硬件电路连接

如图 4.3.1 所示。

图 4.3.1

5、 工程上板

使拨码开关 KEY10=1,KEY11=0,其它拨码开关为 0,然后下载工程。

空采噪声效果如图 4.4.1 所示,查看 dout、dout_cha 信号,在大概对应通道 0、32、65、127 的位置可能会有突出噪声波形。

图 4.4.1

使用信号发送器作为外接信号源(应注意信号幅度范围 0~1V),产生16KHz-80mV-占空比 50%的脉冲波,并连接到单个 ad8488 的输入通道,预期应是每间隔一个采集时序,对应输入通道应有正向突出波形,同时由于 ad8488 里面是个电荷灵敏前置放大器,上升沿对应正电荷,下降沿对应负电荷,所以还会有波形相似的负向突出波形。如图 4.4.2~图 4.4.5 所示。

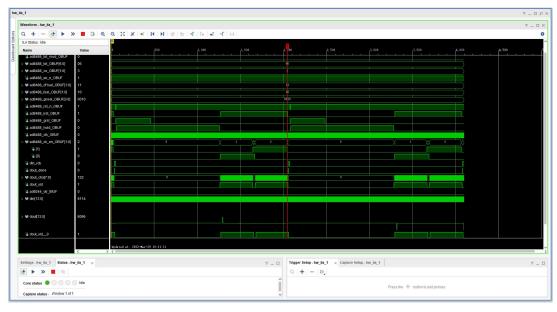


图 4.4.2

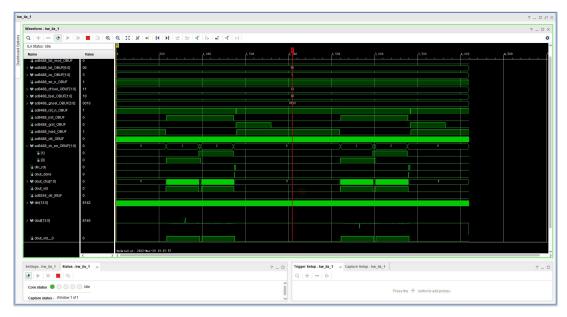


图 4.4.3

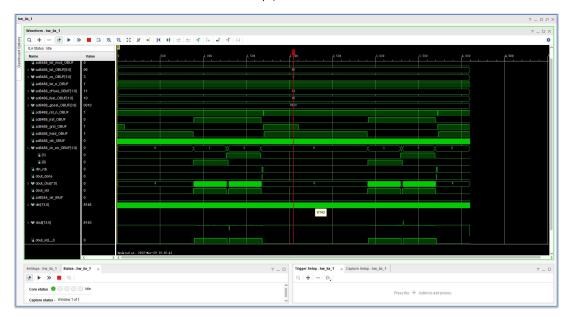


图 4.4.4

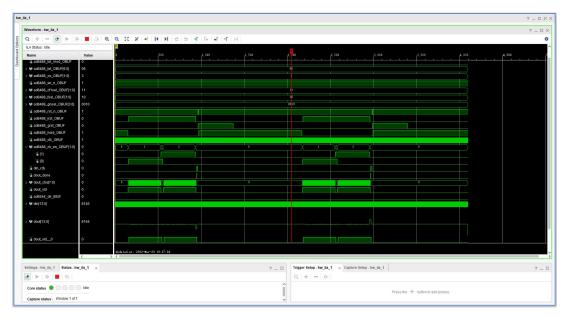


图 4.4.5

使用信号发送器作为外接信号源(应注意信号幅度范围 0~1V),产生 16KHz-80mV-占空比 50%的脉冲波, 并连接到 ad8488 的输入通道 0、32、65、127, ILA 捕抓 ad9244 采集波形如图 4.4.6 所示。

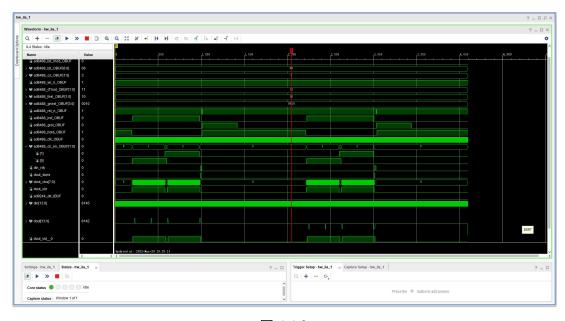


图 4.4.6

五、 技术支持

售后: 开发板保修期为 6 个月, 全国统一服务热线: 020-39002701, QQ: 1241003385 吴老师。

六、 更多帮助

5、明德扬官网: www.mdy-edu.com

6、明德扬总线: 020-39002701

7、论坛: <u>www.fpgabbs.com</u>

8、FPGA 交流群: 544453837

9、线上商城: (1) www.mdy-edu.taobao.com

(2) https://shop247359875.taobao.com