
Assignments

VHDL and logic synthesis course

(spring 2023 edition)

Lab assignment s6

Design of a simple_counter

counter

Francisco Rodríguez Ballester
prodrig@disca.upv.es

Computing Engineering Department

Universitat Politècnica de València

Spring 2023

Assignments for the VHDL and logic synthesis

course (spring 2023 edition)

Lab assignment s6

Design of a simple_counter counter

Contents

1 Introduction 3

1.1 Important notes about work authoring 4
1.2 VHDL background before you start 4

2 Project setup 4

2.1 Add �les to the project 5

3 Develop the design unit interface 5

4 Develop the design unit implementation 7

4.1 Implementation tips . 7

5 Develop the testbench 9

5.1 The stimuli . 10
5.2 Expected results . 11
5.3 The tests . 12

6 Checklist 13

7 Submission 13

2

Pay attention

During the course you will need to develop di�erent design units or alter-
native versions of a given design unit.
You are advised to take precautions in order to avoid losing your work
when developing one of these designs or variations. To clearly distinguish
�les from separate assignments you should solve each assignment in a

separate, empty folder, making copies of those �les you need from pre-
vious assignments instead of reusing the source code �les from a previous
assignment to develop a new one.
The same advice is applicable to synthesis projects: it is wiser to create a
new project per assignment than to reuse a project from an already �nished
assignment unless you are explicitly asked to do so.
If you work this way you will always have the opportunity to review, modify,

compile, simulate, etc. any �nished and already submitted assignment if
the need arises. For example you may receive a comment from your

instructor about an already submitted assignment asking you to do

some modi�cations to your code or changes to the project in order to
resubmit the assignment and obtain a better mark.

1 Introduction

In this lab assignment you have to create a design unit of a �exible counter. This
counter is �exible in the sense that a generic parameter allows to set the maximum
count stored into the counter. It has a couple of input ports (called rst and clk) both
of them std_logic, and a couple of output ports (called count and mcount), one of
them integer and the other std_logic; it also has a generic (called MAX_COUNT) to set
the maximum value that can be stored into the counter.

The counter must maintain the count (an integer value ranging from 0 to MAX_COUNT)
internally in order to set the count ouput and determine if the value of the mcount output
is either `1' or `0'. There must be an internal data object maintaining the counter value
as this value needs to be read and written, something impossible for an output port like
count.

This is a simulation-only assignment in which you must develop and test a simple
yet �exlible counter.

This design unit is composed of two separate blocks:

� An edge-triggered counter that increases its internal count on each active edge of
the clock, from 0 to a given maximum value ciclycally. This internal count value
is then copied onto the count output port. The use of a process with the correct
sensitivity list to describe its behaviour is compulsory.

3

� A combinational block that determines, from the internal count and the generic
MAX_COUNT values, if the output mcounthas to be `0' or `1'. It is compulsory to
model this combinational block using a parallel when signal assignment.

In this lab assignment you are required to develop both the design unit and the
testbench code from scratch.

1.1 Important notes about work authoring

In this 2023 edition of the course you may work on your own or with a team mate.
You can comment your work with other classmates (other than your team mate, if you
have one); you're in fact encouraged to do so. However sharing your code is well o�

limits! You can comment, reason, criticize, etc. the work of your other classmates but
it is absolutely required you add personal/team work to the �les you submit in order to
get credit.

If you work with a team mate, only one of the team members must submit the
assignment. It is also essential that you include your name(s) as a comment at the
very start of each text �le in order to get credit. This applies also to �les downloaded
from the course site, if you have to edit them.

1.2 VHDL background before you start

Before you start working in this assignment there are some VHDL concepts you must
be familiar with, added to the VHDL concepts from all previous assignments. If you're
not comfortable with any of them, please resort to the referenced documentation:

1. Using an process to model an edge-triggered memory block with asynchronous
inputs.

� All Rx templates (from R1 to R8) from the VHDL model templates PDF
document you may �nd in the moodle course page.

� Unit 5, slides 20-24, 27-29, 32-34.

2. Using parallel assignments to model a combinational block through a data�ow
design.

� Unit 4, slides 5-12

2 Project setup

Repeat the steps of the �rst assignment (lab assignment s1 - dec3to8i) to create a Mod-
elsim project.

The project name must be lab_s6_<YourSurname> to clearly identify your work once
downloaded by the instructor, and it must be placed in a folder of the same name.

4

Replace <YourSurname> with your last name with no spaces (and without `<' and
`>'). Avoid using characters not belonging to the English alphabet like accented letters;
for example if your name is Paco Rodríguez (note the accented í) the project name
should be lab_s6_Rodriguez.

Activity 1 � Create the project

Create a new Modelsim project called lab_s6_<YourSurname> as de-
scribed in this section.

2.1 Add �les to the project

Once the project is created perform the following steps to prepare the project �les for
this assignment:

1. Create a new �le and add it to the project. This �rst �le, simple_counter.vhd,
is a VHDL Module that will contain the description of the counter.

2. Create a new second �le, simple_counter_tb.vhd, and add it to the project. This
second �le is a VHDL Testbench that will contain the VHDL code used to test the
counter.

Figure 1: Simple counter interface.

3 Develop the design unit interface

Remember you must import all declarations from the std_logic_1164 package (com-
piled into the ieee library) in order to be able to use the data types std_logic or
std_logic_vector when writing the interface for the simple_counter module.

The information required to develop the interface of the counter design unit is shown
in Table 1 and depicted in Figure 1.

Please note: The rst input is low-level active and the clk input is active on the
rising edge. This information is not part of the module interface (in both cases the
data type is std_logic) but part of the description of the module's behaviour; ie. this
information will be used to code the module's architecture.

5

Table 1: Simple counter interface

Filename simple_counter.vhd

Entity name simple_counter

Generics
Generic name Generic type and default value

MAX_COUNT
Maximum counter value.
Type integer, default value 5

Inputs

Port name Port description

rst
Reset input. Low-level active.
Type std_logic, default value `1'

clk
Clock input. Triggered on the rising edge.
Type std_logic

Outputs

Port name Port description

mcount
Maximum count output indication.
Type std_logic

count
Counter value.
Type integer range 0 to MAX_COUNT

Imagine that, in the future, we want to use (instantiate) a counter with the same
behaviour as this one except that we do not want/need the reset input; that is, we want
to use a simple_counter counter as if it hand't a rst input.

We could, of course, create another module with almost the same behaviour but
without a rst input. Instead creating another module, however, we can use the power
of VHDL to allow the use of this counter (that declares a rst input) as if it hand't a

rst input.
That is, with a single entity we can create two counters: one with the rst input

and reset functionality and another one without the rst input and, obviously, without
the possibility to enter the reset condition. And the di�erence between the two will be
just including (in the �rst case) or excluding (in the second one) the rst input from the
port mapping section at the instantiation, and the use of the correct default value.

In order to determine the correct default value for the rst port we need to know
that rst is a low-level active value (so the counter is reset when this input is 0). With
this in mind the reasoning is

1. If we set a default value of 0 for the rst input, when this input port is not mapped
in an instantiation the rst port will have a constant value of 0 and hence the
counter will be permanently in the reset condition.

2. If we set a default value of 1 for the rst input, when this input port is not mapped
in an instantiation the rst port will have a constant value of 1 and hence the
counter won't be able to enter the reset condition.

A counter that can't count because it can't leave the reset codition is useless, so from
the above two options, the correct default value for rst is 1. If this default value is used

6

is because the rst port has been excluded from the port mapping in the instantiation,
so the counter won't be able to enter the reset condition . . .
But that is exactly what happens with a counter without reset input, right?

4 Develop the design unit implementation

The behaviour of this counter is quite simple once you realize it consists of two inde-

pendent blocks:

� There must be a block to maintain the counter value; this the block1 in Figure 2.
This must be modelled after a �ip-�op / register template as the counter counts on
the rising edge of the clock input. The calculated value must be maintained into
an internal data object (without direction restrictions, so can be read and written)
and copied onto the count output port with a parallel assignment; this is because
the count output port has direction restrictions and can only be written into and
to count we need to read and write (the VHDL code for counting is something
along the lines of count_value <= count_value + 1).

1. If the reset input is active (low-level, `0') the counter value must be reset to
0 immediately (asynchronously).

2. If the reset input is not active then the VHDL code must test if a rising edge
is detected on the clock input. If this is the case then the counter value must
be incremented in one unit unless the value equals MAX_COUNT because the
next counter value must be zero.

� There must be a combinational block (block2 in Figure 2) that compares the current
counter value against MAX_COUNT and determines the value of the mcount port to
be `1' if those values are equal and `0' otherwise.

As a speci�c requirement of this assignment it is compulsory to use a process

with sensitivity list to model the behaviour of the �rst block. You are adviced to look
for the template that best suits the above description (register with an asynchronous
reset input) in the VHDL Process templates PDF document you may �nd in the moodle
web page.

It is also compulsory to use a parallel when signal assignment to model the
second block.

4.1 Implementation tips

In order to express what you want to get from the circuit (the circuit behaviour) you
need to have a clear idea of such behaviour. This section tries to guide you during the
coding process, starting from the reasoning that must be carried out before code typing.

First of all you must depict a block diagram of the blocks/subsystems your circuit is
composed of in order to

7

Figure 2: Simple counter internal blocks (initial version).

� Isolate each subsystem to ease the analysis of what kind of circuit is required:
either combinational, latch or register.

� Determine the inputs of each subsystem.

This divide & conquer strategy in which you devise the subsystems of the circuit you
want to design and their connections does not preclude the use of a single design unit
to develop your description, but it helps to better understand the problem and to select
the best description strategy (data�ow, structural, or behavioral) for each subsystem.

In this particular case there are two subsystems or blocks that can be described
separately, each devoted to determine the value of one of the circuit outputs as depicted
in Figure 2.

Let's analyze this block diagram and try to extract as much information as we can

1. The block1 must use the process template of a register with an asynchronous
reset input.

2. The block1 must read the current value of the counter to calculate the next one;
this is the reason the calculated value is used also as a block input.

3. Due to the fact it is a requirement of the assignment to separate the description
of block2 as a parallel when signal assignment, a signal must connect both blocks;
it has to be a signal? yes, can't use a variable (in this particular case) because a
variable can't be used outside the process where it is declared.

4. As output ports can't be read, the internal counter value can't be held into the
count port; doing so is impossible because it is an output port but the counter
value must be read from blocks block1 and block2.

From the above analysis it should be evident the �rst system block diagram version
has to be re�ned to avoid reading from count. The solution is quite simple in fact:
declare and use an internal signal for all the calculations and use a third block to copy
the calculated value onto count. This block is also depicted in Figure 2 as copy ; the name

8

(a) Copy block is an independent block. (b) Copy block is part of block1.

Figure 3: Simple counter internal blocks (�nal version).

has been selected to emphasize the idea this block is a mere parallel signal assignment
from the internal signal (whatever name you choose) onto the count output port.

There are two options to describe the copy block, as depicted in Figure 31:

� An independent block as depicted in Figure 3a. In this case the signal assignment
is a parallel one.

� Part of the block1 (see Figure 3b). In this case the signal assignment is a sequential
one as it is inside the process that describes block1.

Now that you have a clear vision of the di�erent blocks it is easier to describe each
one in the description/implementation area of the architecture of the simple counter
module. Just remember to declare the internal signal in the declarative area of the
architecture.

5 Develop the testbench

For this assignment you have to create the testbench from scratch. This is all the
information needed to create it:

� The testbench entity has no ports, all data objects are internal.

� The testbench architecture must contain, in the declarative area . . .

� The component declaration of the module you want to test, the simple_counter
counter. This declaration is the same as the simple_counter entity decla-
ration changing the keyword to component.

� A constant TB_MAX_COUNT, type integer, value 5. The counter's MAX_COUNT
generic will be mapped to this constant, so changing the testbench constant
value will change the maximum count of the tested counter.

1From both Figure 3a and Figure 3b the reference to the generic MAX_COUNT has been removed in
order to improve the readability of the images.

9

� The internal signals needed to map all counter inputs and outputs (rst, clk,
count, and mcount). The type of these internal signals is the same as the
ports of the counter, except the range of count is 0 to TB_MAX_COUNT2.

� The testbench architecture must contain, in the implementation area . . .

� An instance of the simple_counter counter with the instance name dut.
In this instance the counter MAX_COUNT generic is mapped with the testbench
constant TB_MAX_COUNT, and all counter ports are mapped with the testbench
internal signals of the same name.

� A simple process to create the clock as a �xed-frequency digital signal of,
say, 20 ns period (10 ns high and 10 ns low).

� Another process to create the reset input to the dut. Call this process
stimuli ; it has no sensitivity list in order to be able to include wait statements
inside. The functionality of this process is detailed in subsection 5.1

5.1 The stimuli

When creating the stimuli or input vectors for a given dut you must try to cover all
possible cases; if there is a huge number of input cases this becomes impractical and you
must select enough cases to cover all the dut functionality.

The functionality to be tested is summarized below:

1. The counter resets asynchronously as soon as the rst input is asserted (low).

� To test the counter reacts asynchronously to the reset this input must be
asserted when there is no clock edge.

� To test the rst input has higher priority than the clk input, the reset must
be asserted during enough time to clash with clock edges.

2. The counter can be used without mapping the reset input or mapping the reset
input with the open keyword. That is, we must verify that the counter can be
used as if it hadn't a reset input.

3. The counter counts cyclically from 0 to the value mapped to the MAX_COUNT generic.

The VHDL code of the stimuli process can test only the �rst of the above items.
The other two require modi�cations to the testbench code in order to create a new test-
bench version (with or without reset input, change the TB_MAX_COUNT constant value),

2As the constant TB_MAX_COUNT of the testbench will be mapped with the generic MAX_COUNT of the
counter, the range of the testbench internal signal count(0 to TB_MAX_COUNT) will be the same as the
the range of the counter port count(0 to MAX_COUNT).
Can't use MAX_COUNT in the declaration of the testbench constant because MAX_COUNT is the generic of
the simple_counter counter and hence accesible only inside the counter, but not accesible from the
testbench.

10

compiling the modi�ed testbench code and simulating the new version; all these steps
are detailed in the tests section (subsection 5.3).

To test that the counter reacts asynchronously to the reset input, the code of the
stimuli process must create the following waveform for the rst input:

1. Low during 3 clock cycles. This ensures the counter starts with the value 0, and
that several clock edges arrive while the reset is asserted.

This part of the process code is

rst <= '0';

for i in 1 to 3 loop

wait until rising_edge(clk);

end loop;

wait for 2 ns;

The code above uses a wait statement until the clk signal has a rising edge con-
dition; this kind of waiting code help us to develop the stimuli process irrespective
of the amount of time assigned to the clock period (20 ns or 100 ns is irrelevant,
we don't have to change the code of the stimuli process).

The �nal wait statement with a time period of 2 ns guarantees the reset signal
is deasserted when there is no clock edge, so we can test the counter reaction in
isolation.

2. Then high during TB_MAX_COUNT+1 clock cycles. This ensures the counter has
enough time to count from 0 to the maximum count and then 0 again. The way to
code waiting for some clock cycles is similar to the code snippet of the �rst item.

3. Then low again during 3 clock cycles. This guarantees we can see the reaction of
the counter to the reset input with no clock edge at the same time. The way to
code waiting for some clock cycles is similar to the code snippet of the �rst item.

4. Then high again during 3 clock cycles. The way to code waiting for some clock
cycles is similar to the code snippet of the �rst item.

5. The simulation is �nally automatically stopped with a assert statement of failure
level, as described in a previous assignment.

5.2 Expected results

Once we perform the testbench simulation and while reviewing the outcome the question
that must be answered is: Does the simple_counter counter behaves correctly?

To answer this question we need to know what are the expected results; these change
depending on the section of the stimuli process:

1. Low during 3 clock cycles. The counter must be held in reset during this simulation
section, so count must be 0 and mcount must be `0'. When the rst deasserts 2 ns
after the clock edge the counter must not change its value as no reset and no clock
edge means �Maintain the stored value�.

11

2. Then high during TB_MAX_COUNT+1 clock cycles. The counter count output must
change from 0 to 1 on the �rst clock edge of this simulation section, from 1 to 2
on the second, and so on, till it reaches the value TB_MAX_COUNT and then the next
value must be 0 again. During this simulation section the mcount output must be
`0' except while count has the value TB_MAX_COUNT.

3. Then low again during 3 clock cycles. The counter must be held in reset again
during this part, so count must be 0 and mcount must be `0'. Expect same results
as from item 1.

4. Then high again during 3 clock cycles. The counter must count again during this
part, so expect the same results as obtained from item 2.

5.3 The tests

There are some functionality aspects that can only be tested modifying the testbench
code. In particular, the use of the counter as if it hadn't a reset input and the use of the
counter with di�erent values of its MAX_COUNT generic.

We can't test all possible values of the MAX_COUNT generic, but testing some values
will be enough; after all, what we are testing is if the code you developed to create
the simple_counter contains some hardcode value (wrong) as maximum count or if it
actually depends on the generic value (right).

The tests to be performed are described below. For each test you must recompile the
testbench code, perform a simulation, make a screenshot of the simulation results that
cover all sections of the stimuli process code, rename the image �le as simulation_1.png
in case of the test 1, simulation_2.png in case of the test 2, and so on, and save the
image �le into the project folder.

Test 1 Map the rst port of the counter with the rst internal signal of the testbench,
and set the TB_MAX_COUNT constant of the testbench to the value 2.

The name of the screenshot image �le is simulation_1.png; remember to store it
into the project folder.

Test 2 Map the rst port of the counter with the rst internal signal of the testbench,
and set the TB_MAX_COUNT constant of the testbench to the value 3.

The name of the screenshot image �le is simulation_2.png; remember to store it
into the project folder.

Test 3 Map the rst port of the counter with the rst internal signal of the testbench,
and set the TB_MAX_COUNT constant of the testbench to the value 5.

The name of the screenshot image �le is simulation_3.png; remember to store it
into the project folder.

12

Test 4 Map the rst port of the counter with the open keyword, and set the TB_MAX_COUNT
constant of the testbench to the value 10. In this test the counter must be counting
at all rising edges of clk, irrespective of the rst value.

The name of the screenshot image �le is simulation_4.png; remember to store it
into the project folder.

6 Checklist

Once you are satis�ed with the simulation results it is time to check the following list
before uploading your work

1. Your VHDL �le is called simple_counter.vhd.
Please remember the names of all team members must appear at the start of
this �le in a VHDL comment in order to get credit for this assignment.

2. You have respected the simple_counter interface requirements in full: entity
name, names and types of ports and generics.

3. You have respected the simple_counter implementation requirements in full: two
separate blocks, one to describe the count output using a process with sensitivity
list and a second block using a parallel when signal assignment to describe the
mcount output.

4. You have create a VHDL testbench �le to simulate the m design and help verify
the functionality is correct.
Please remember the names of all team members must appear at the start of
this �le in a VHDL comment in order to get credit for this assignment.

5. You have one screenshot per simulation (four total image �les) where the input
and output values are clearly visible.
You have neither edit nor crop the screenshot image(s). If you need to zoom
in in order for the values to be visible, grab several screenshots.

7 Submission

Once you have veri�ed the checklist of the previous section you can proceed to submit
your work onto the corresponding assignment page of the course website.

What to submit: A ZIP archive with the whole project folder and screenshot image
�les.

13

	Introduction
	Important notes about work authoring
	VHDL background before you start

	Project setup
	Add files to the project

	Develop the design unit interface
	Develop the design unit implementation
	Implementation tips

	Develop the testbench
	The stimuli
	Expected results
	The tests

	Checklist
	Submission

