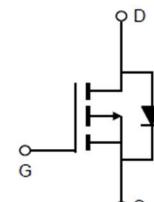
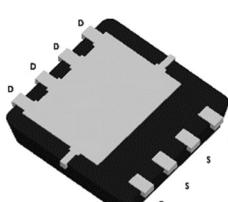


Product Summary

Description and Applications

V(BR)DSS	RDS(ON) max	ID max
-30V	<11mΩ @ VGS = -10V	-24A
	<17.5mΩ @ VGS = -4.5V	

The CQY21357A uses advanced trench technology to provide excellent RDS(ON). This device is suitable for use as a load switch or other general applications



This device is ideal for switch switching, power management in portable / desktop PCs.

RoHS and Halogen-Free Compliant.

View and Internal Schematic Diagram

DFN3x3EP

Internal Schematic

Marking Information

DFN3x3EP

NOTE:

LOGO - CQAOS

21357A - Part number coder

F - Fab location code

A - Assembly location code

Y - Year code

W - Week code

L&T - Assembly lot code

Ordering Information

Part Number	Case	Packaging
CQY21357A	DFN3x3EP	5,000/Tape & Reel

Maximum Ratings (@TA = +25°C unless otherwise specified.)

Parameters	Symbol	Max	Units
Drain-Source Voltage	VDSS	-30	V
Gate-Source Voltage	VGSS	±20	V
Continuous Drain Current ^G	ID	-24	A
		-24	
Pulsed Drain Current ^C	IDM	-82	A
Power Dissipation ^B	PD	24	W
		9.6	
Operating and Storage Temperature Range	T _J , T _G	-55 to +150	°C

Thermal Characteristics

Characteristic	Symbol	Typ	Max	Unit
Maximum Junction-to-Ambient ^A t ≤ 10s	$R_{\theta JA}$	26	30	°C/W
Maximum Junction-to-Ambient ^A D Steady-State		49	60	°C/W
Maximum Junction-to-Case	$R_{\theta JC}$	4.5	5.2	°C/W

 Electrical Characteristics (@ $T_A = +25^\circ\text{C}$ unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
$BVDSS$	Drain-Source Breakdown Voltage	$ID=-250\mu\text{A}$, $VGS=0\text{V}$	-30			V
$IDSS$	Zero Gate Voltage Drain Current	$VDS=-30\text{V}$, $VGS=0\text{V}$			-1	μA
		$TJ=55^\circ\text{C}$			-5	
$IGSS$	Gate-Body leakage current	$VDS=0\text{V}$, $VGS= \pm 20\text{V}$			± 100	nA
$VGS(\text{th})$	Gate Threshold Voltage	$VDS=VGS$ $ID=-250\mu\text{A}$	-1	-1.5	-2	V
$RDS(\text{ON})$	Static Drain-Source On-Resistance	$VGS=-10\text{V}$, $ID=-17\text{A}$		8	11	$\text{m}\Omega$
		$TJ=125^\circ\text{C}$		11.9		
		$VGS=-4.5\text{V}$, $ID=-13\text{A}$		12	17.5	$\text{m}\Omega$
gFS	Forward Trans conductance	$VDS=-5\text{V}$, $ID=-17\text{A}$		61.8		S
VSD	Diode Forward Voltage	$IS=-1\text{A}$, $VGS=0\text{V}$		-0.73	-1	V
IS	Maximum Body-Diode Continuous Current				-24	A
DYNAMIC PARAMETERS						
C_{iss}	Input Capacitance	$VGS=0\text{V}$, $VDS=-15\text{V}$, $f=1\text{MHz}$		1821		pF
C_{oss}	Output Capacitance			237		pF
C_{rss}	Reverse Transfer Capacitance			205		pF
R_g	Gate resistance	$VGS=0\text{V}$, $VDS=0\text{V}$,		4.4		Ω
SWITCHING PARAMETERS						
Q_g	Total Gate Charge	$VGS=-10\text{V}$, $VDS=-15\text{V}$, $ID=-17\text{A}$		37		nC
Q_{gs}	Gate Source Charge			7.3		nC
Q_{gd}	Gate Drain Charge			7.7		nC
$t_{D(\text{on})}$	Turn-On Delay Time	$VGS=-10\text{V}$, $VDS=-15\text{V}$, $RL=0.9\Omega$, $R_{\text{GEN}}=3\Omega$		9		ns
t_r	Turn-On Rise Time			71		ns
$t_{D(\text{off})}$	Turn-Off Delay Time			46		ns
t_f	Turn-Off Fall Time			77		ns
t_{rr}	Body Diode Reverse Recovery Time	$IF=-17\text{A}$, $dl/dt=100\text{A}/\mu\text{s}$		13.8		ns
Q_{rr}	Body Diode Reverse Recovery Charge	$IF=-17\text{A}$, $dl/dt=100\text{A}/\mu\text{s}$		1.2		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 1oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on $T_{J(\text{MAX})}=150^\circ\text{C}$, using junction-to-case thermal resistance and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(\text{MAX})}=150^\circ\text{C}$. Ratings are based on low frequency and duty cycles to keep initial $T_J=25^\circ\text{C}$.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted on 1in² FR-4 board with 1oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$.

G. The maximum current rating is package limited

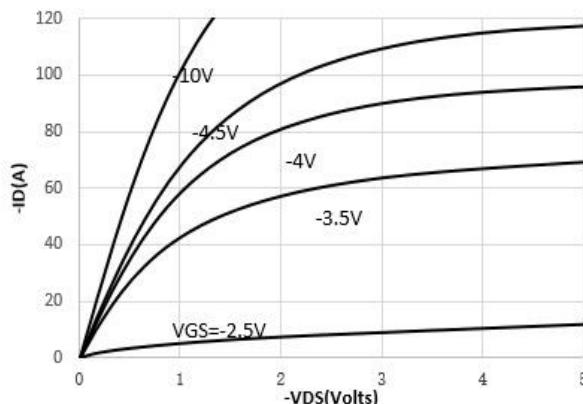

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

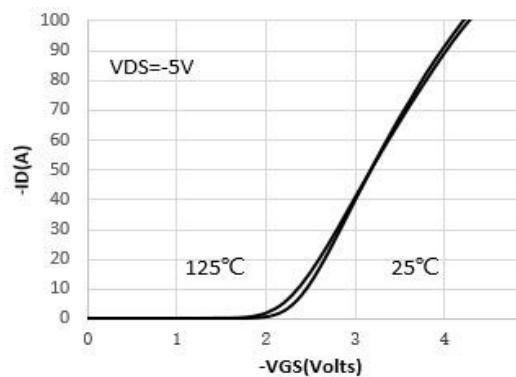


Figure 2 Transfer Characteristics (Note E)



Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

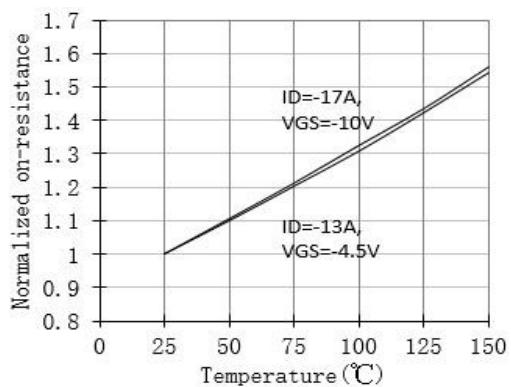


Figure 4: On-Resistance vs. Junction Temperature (Note E)

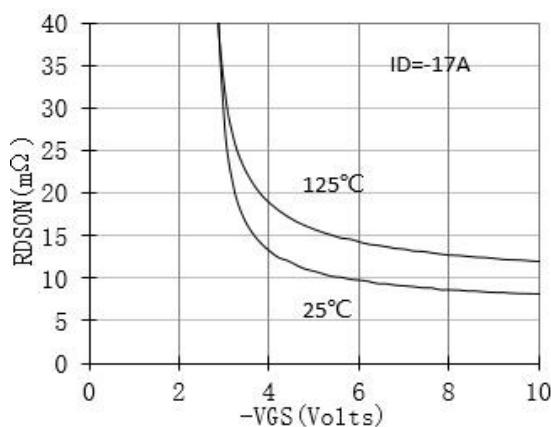


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

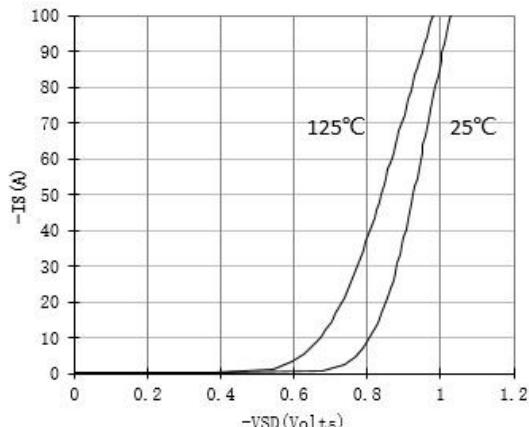
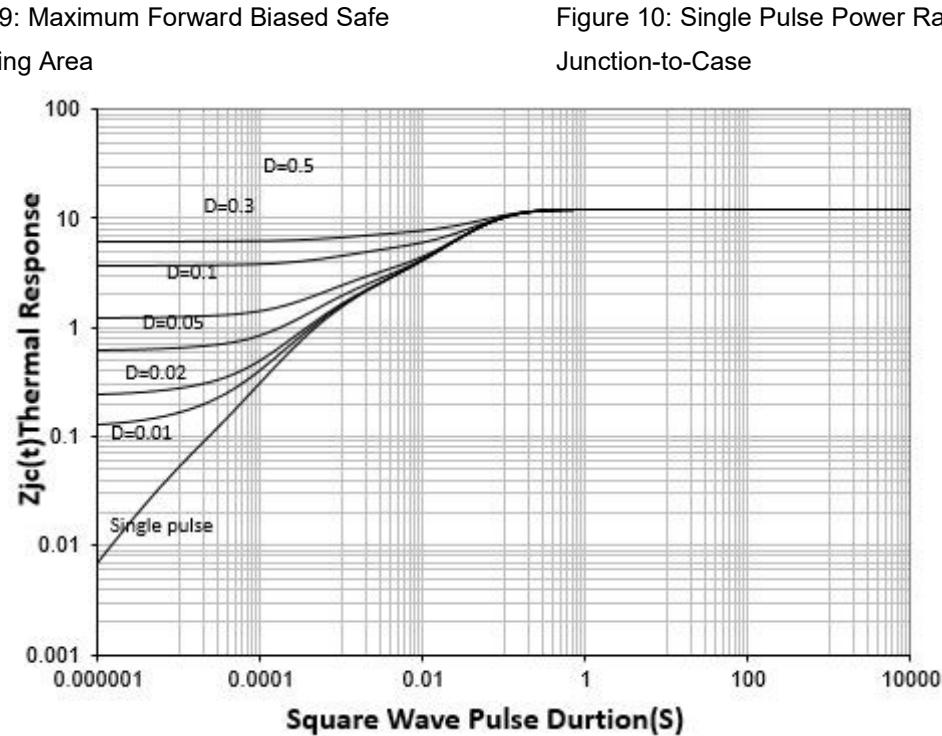
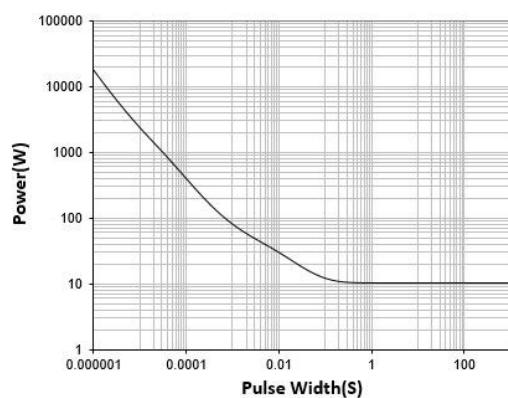
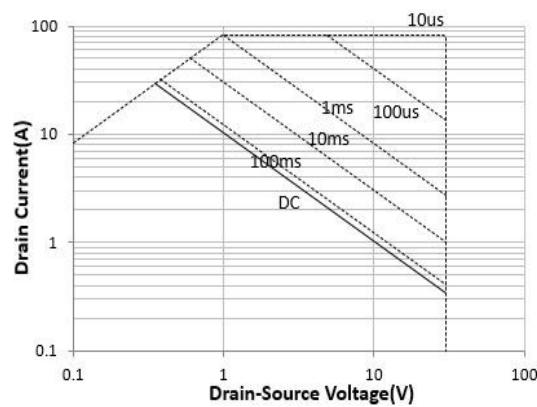
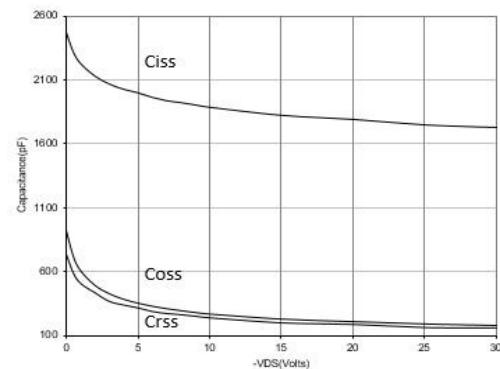
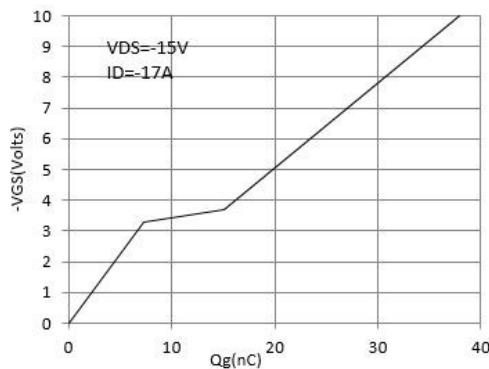







Figure 6: Body-Diode Characteristics (Note E)

单击下面可查看定价, 库存, 交付和生命周期等信息

[>>CQAOS](#)