产品规格书

A17-模组

产品型号: DYP-A17-V1.1

文件版本: V1.0

文件密级:外发

目录

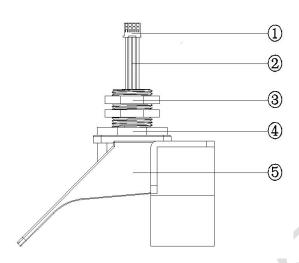
_	概览	2
	1.综述	2
	2.产品特点	2
	3.适用范围	2
<u> </u>	外观说明	3
	1.外观示意图	3
	2.引线说明	3
三	输出方式说明	4
	1.PWM 处理值输出方式	4
	2.UART 自动输出方式	5
	3.UART 受控输出方式	6
	4.RS485 受控输出方式	7
	5.Modbus 协议	7
四	模组参数	. 10
	1.工作参数	. 10
	2.额定环境条件	. 11
	3.额定电气条件	
五.	模组选型说明	. 12
	有效探测范围参考图	
	安装事宜说明	
	注意事项	
九	封装尺寸	
	1.无固定支架	
	2.有固定支架	. 15
+	包装规范	1 4

一 概览

1.综述

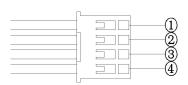
A17-模组是一种使用超声波传感技术配合反射式结构进行测距的模组。模组采用高性能处理器、高品质元器件,产品稳定可靠、使用寿命长。模组腔体采用防积水工艺设计,有效减少探头凝露现象,工作环境适应性强。模组内置高精度测距算法和功耗管理程序,测距精度高、功耗低。A17-模组以下简称"模组"加以说明。

2.产品特点


- •采用智能信号处理电路, 盲区小, 测量距离远, 量程 25cm~1000cm
- •内置高精度测距算法,最小误差<1cm
- •测量角度可控,灵敏度高,抗干扰能力强
- •内置目标识别算法,目标识别准确度高
- •多种输出方式可选,PWM 处理值、UART 自动、UART 受控和 RS485 受控,接口适应性强
- •板载温度补偿功能,自动修正温度偏差,-15℃到+60℃均可稳定测距
- •采用防积水工艺设计,有效减少探头凝露现象
- •低功耗设计,静态电流<10uA,测量状态电流<15mA
- •低电压供电, 3.3~5.0V 适用
- •静电防护设计,输出引线加入静电防护器件,符合 IEC61000-4-2 标准
- •支持远程升级,软件算法灵活调整
- •工作温度-15℃到+60℃
- •防尘防水 IP68

3.适用范围

- •下水道水位监测
- •小角度水平测量
- •智能检测系统


二 外观说明

1.外观示意图

- ①HY2.0mm-4P 带锁扣连接器
- ②线材
- ③固定螺母
- ④固定支架
- ⑤模组主体

2.引线说明

引线序号	标注	功能说明	备注
1	VCC	3.3V~5V 电源引线	
2	GND	电源接地引线	
3	RX	功能引线	输出方式不同功能不同
4	TX	功能引线	输出方式不同功能不同

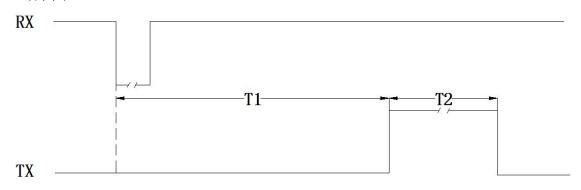
三 输出方式说明

模组有 PWM 处理值输出、UART 自动输出、UART 受控输出和 RS485 输出四种输出方式,通过软硬件进行设定,选择不同型号可将模组设定到不同的输出方式。

详细输出方式对应型号详见第五项: 模组选型说明。

1.PWM 处理值输出方式

PWM 处理值输出接口简单, 匹配灵活, 可与数字或模拟电路连接快速实现测距应用。


(1) 引线功能定义

引线序号	标注	功能说明	备注
3	RX	触发输入引线	
4	TX	PWM 处理值输出引线	

(2) 工作说明

当RX引线接收到一个下降沿脉冲,模组会从睡眠模式中被唤醒开始进入工作模式,并启动 5~15次检测功能,当完成检测后TX引线会输出高电平的脉宽信号,模组TX引线的高电平持续时间 对应检测目标与模组之间的距离。模组触发周期必须大于2.5s,如果模组没有检测到物体则TX引线将输出一个固定80ms脉宽。

(3) 时序图

注: T1=0.9s~2.5s; T2=1.4ms~80ms(PWM高电平脉宽时间); RX下降沿触发脉宽建议在10us~2ms之间。

(4)计算方式

公式: S=T*V/2(S为距离值,T为PWM高电平脉宽时间,V为声音在空气中的传播速度)。由于模组程序已对速度进行温度补偿,因此V直接按常温下的声速348m/S进行计算,公式简化后S=T/57.5(此时距离S单位为厘米,时间T单位为us)。

举例: 当输出引线 "TX"的PWM高电平脉宽时间T2为10000us时,

得 $S= T/57.5=10000/57.5\approx 174$ (cm),表示当前测量的距离值为174厘米。

2.UART 自动输出方式

UART 自动输出方式按 UART 通信格式输出测量距离值,本方式无需外加触发信号,模组每5~15 次测量完成后 TX 引线将输出测量距离值。响应时间为 0.9s~2.5s(工作周期和响应时间可根据客户需求进行定制开发)。本输出方式可减少用户单片机 I/O 口使用,只需一个 I/O 口即可实现距离测量。

(1) 引线功能定义

引线序号	标注	功能说明	备注
3	RX	空	
4	TX	UART 输出引线	

(2) UART通信说明

UART	数据位	停止位	奇偶校验	波特率
TTL 电平	8	1	无	9600bps

(3) UART输出格式

帧数据	说明	字节个数
帧头	固定为 OXFF	1 字节
Data_H	距离数据的高8位	1 字节
Data_L	距离数据的低 8 位	1 字节
SUM	通讯校验和	1字节

(4) UART输出举例

帧头	Data_H	Data_L	SUM
OXFF	0X01	OXA1	OXA1

注: 校验和只保留累加数值的低8位;

SUM = (帧头+ Data_H+ Data_L)&0x00FF = (0XFF + 0X01 + 0XA1)&0x00FF = 0XA1;

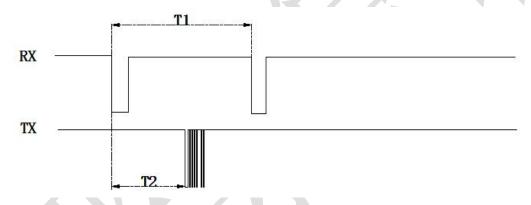
距离值= Data_H*256+ Data_L=0X01A1;

转换成十进制等于417;

表示当前测量的距离值为417厘米。

3.UART 受控输出方式

UART 受控输出方式按 UART 通信格式输出测量距离值,当 RX 引线接收到一个下降沿脉冲 后模组会进行 5~15 次测量,测量完成 TX 引线将输出测量距离值。模组触发周期必须大于 2.5s。 本输出方式可控制测量周期,能降低功耗,如用电池供电时推荐使用该输出方式。


(1) 引线功能定义

引线序号	标注	功能说明	备注
3	RX	触发输入引线	
4	TX	UART 输出引线	

(2) UART通信说明

UART	数据位	停止位	奇偶校验	波特率
TTL 电平	8	1	无	9600bps

(3) 时序图

注: T1 >2.5s; T2=0.9~2.5s。 RX下降沿触发脉宽建议在10us~2ms之间。

(4) UART输出格式

帧数据	说明	字节
帧头	固定为 OXFF	1字节
Data_H	距离数据的高8位	1字节
Data_L	距离数据的低8位	1 字节
SUM	通讯校验和	1 字节

(5) UART输出举例

帧头	Data_H	Data_L	SUM
OXFF	0X01	OXA1	OXA1

注: 校验和只保留累加数值的低8位;

SUM =(帧头+ Data_H+ Data_L)&0x00FF

= (0XFF + 0X01 + 0XA1) & 0x00FF

=0XA1;

距离值= Data H*256+ Data L=0X01A1;

转换成十进制等于417;

表示当前测量的距离值为417厘米。

4.RS485 受控输出方式

(1) RS485输出引线定义

引线编号	引线名称	引线描述	备注
3	RX	RS485-B 通讯反相端	
4	TX	RS485-A 通讯同相端	

(2) RS485接口参数

接口	数据位	停止位	奇偶校验	波特率
RS485 电平	8	1	无	默认 9600bps

(3) RS485 通讯协议

详见"Modbus协议"章节。

5.Modbus 协议

本模组在所有输出方式下同时支持 Modbus 协议,便于用户读取与设置内部参数。

(1) Modbus协议参数

模式	校验	传感器地址	读功能码	写功能码
Modbus-RTU	CRC-16/MODBUS	可设置,默认 0x01	0x03	0x06

(2) Modbus协议格式

用户机为主机设备,本模组为从机设备。

主机发送(读):

名称	设备地址	功能码 0x03	寄存器地址	寄存器数量	CRC16 校验
长度(Byte)	1	1	2	2	2

从机回应(读):

名称 设备地址 功能	码 0x03 返回字节数 数据区 CRC16 校验
------------	---------------------------------

电应普 Best sensor

(编号:) 密级:□绝密□机密□秘密■普通

长度(Byte)	1 1	1	N	2
----------	-----	---	---	---

主机发送(写):

名称	设备地址	功能码 0x06	寄存器地址	数据区	CRC16 校验
长度(Byte)	1	1	2	2	2

从机回应(写):

名称	设备地址	功能码 0x06	寄存器地址	数据区	CRC16 校验
长度(Byte)	1	1	2	2	2

(3) Modbus寄存器

状态	寄存器地址	寄存器功能	数据类型	说明	备注
只读	0x0100	处理值	无符号整 型,16位	收到指令后启动测距,经多次测距过滤处理后,输出距离值,单位: mm, 响应时间 0.9s~2.5s	
只读	0x0101	实时值	无符号整 型,16位	模组收到指令后启动测距,直接输出实时距离值,单位:mm,响应时间约130ms	
只读	0x0102	环境温度	有符号整型,16位	单位: 0.1℃,分辨力: 0.5℃,响应时间约 130ms	
读写	0x0200	从机地址	无符号整 型,16位	范围: 0x01~0xFE, 默认 0x01, 0xFF 为 广播地址	
读写	0x0201	波特率	无符号整 型,16位	默认 0x03, 9600bps; 0x01-2400, 0x02-4800, 0x03-9600, 0x04-14400, 0x05-19200, 0x06-38400, 0x07-57600, 0x08-76800, 0x09-115200, 0x0A-128000	
读写	0x0210	盲区判断 值	无符号整 型,16位	该值以内的物体回波将被忽略,只测量 该值以外的距离,范围:25~100,单位: cm,默认值为25	会影响盲区 内的稳定性
读写	0x0211	台阶过滤 等级	无符号整 型,16位	范围: 0~5级,默认值为4; 其中0级不过滤台阶,将选取第一个物体为有效回波; 5级过滤强度最高,将忽略最多的台阶回波,要求被测物的回波幅度很高	过滤等级越 高,实际井面 可能会被忽 略,需根据实 测调整

电应普

Best sensor

(编号:)

密级: □绝密 □机密 □秘密 ■普通

读写	0x0212	探头激励强度	无符号整型,16位	范围: 5~15 级,默认值为 10; 值越大,超声波信号越强,请谨慎修改	对盲区、测量 精度和角度 会有影响
读写	0x0213	小角度模 式切换	无符号整型,16位	范围: 0~1,默认值为0; 0:常规检测角度,1:切换为小角度模式,适用于较狭小空间的检测应用	角度参考六 有效探测范 围参考图
读写	0x0214	增益等级	无符号整 型,16位	范围: 0~3,默认值为0; 其中0级为最小等级,其信号幅值最小; 3级信号幅值最强。 本参数对于水下井面有泡沫的场景,及 模组安装倾斜而出现数据不准确现象, 可有效改善	等级越大可能会误测到 井内台阶,需根据实测调整

提示:

- 1) 寄存器数据为高字节在前,低字节在后。
- 2) 在 UART 受控模式下,传感器未触发时处于休眠状态,串口指令第一帧数据会被忽略,只起唤醒传感器的作用,需要在 500ms 内再次发送指令才会响应。
- 3)普通测井传感器在井内湿气重、温差大时,表面较容易形成凝露、积水,会影响超声波信号,严重时导致传感器测量值为盲区或其他错误值。本模组自身具有的排水工艺设计,能有效缓解积水现象。

(4) Modbus通讯举例

1) 读取

例1: 读取处理值数据

主机: 01 03 01 00 00 01 85 F6 从机: 01 03 02 02 F2 38 A1

说明: 传感器地址为0x01,处理距离值为0x02F2,转换成十进制为754mm。

例2: 读取实时值数据

主机: 01 03 01 01 00 01 D4 36 从机: 01 03 02 02 EF F8 A8

说明: 传感器地址为0x01,实时距离值为0x02EF,转换成十进制为751mm。

例3: 读取温度值数据

主机: 01 03 01 02 00 01 24 36 从机: 01 03 02 01 2C B8 09

说明:传感器地址为0x01,实时温度值为0x012C,转换成十进制为30.0℃。

例4: 读取台阶过滤等级参数

主机: 01 03 02 11 00 01 D5 B7 从机: 01 03 02 00 04 B9 87

说明:传感器地址为0x01,台阶过滤等级为4级。

电应普

Best sensor

(编号:) 密级:□绝密□机密□秘密■普通

例5: 读取增益等级参数

主机: 01 03 02 14 00 01 C5 B6 从机: 01 03 02 00 03 F8 45

说明: 传感器地址为0x01, 增益等级为3级。

2) 写入

例1:修改从机地址

主机: 01 06 02 00 00 05 48 71 从机: 01 06 02 00 00 05 48 71 说明: 传感器地址由0x01修改为0x05。

例2: 修改台阶过滤等级参数

主机: 01 06 02 11 00 03 98 76 从机: 01 06 02 11 00 03 98 76

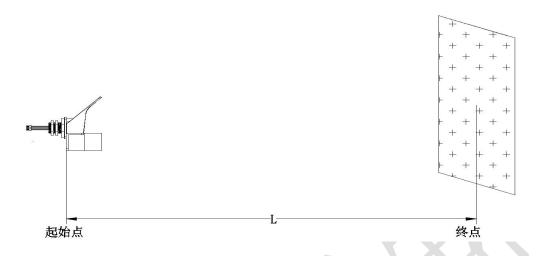
说明: 传感器地址为0x01, 台阶过滤等级参数修改为3级。

例3: 修改增益等级参数

主机: 01 06 02 14 00 03 88 77 从机: 01 06 02 14 00 03 88 77

说明: 传感器地址为0x01,增益等级参数修改为3级。

四 模组参数


1.工作参数

参数项	规格值	单位	备注
工作电压	DC3. 3~5. 0	V	
静态电流	<10	uA	
测量状态电流	<15	mA	(1)
盲区距离	0~25	cm	(2)
测距物体量程	25~1000	cm	(2)
参考角度	≈15°	_	(3)
测量精度	$\pm (1+S \times 0.3\%)$	cm	(2)
响应时间	0.9~2.5	S	
测量分辨力	1	cm	(4)
温度补偿	有温补	_	

- 注: (1) 温度 25±5℃, 湿度 65% RH, 供电 5.0V, 900ms 工作周期测试所得到的典型数据。
 - (2) 温度 25±5℃,湿度 65% RH,50cm*60cm 平面纸箱测得的数据,默认以反射式结构面底部为探测起点,为提高测距稳定性,测距距离变化小于2cm,保持上次测量值。
 - (3) 温度 25±5℃,湿度 65% RH,被测对象为 100cm 距离的 Φ 75mm*100cm 白色 PVC 管测试 所得参考数据,测量距离不同角度也有差异。以上测试数据均在空旷的室内进行,检测模组

安装高度距离地面 30cm。

(4) PWM 处理值、UART 自动、UART 受控输出测量分辨力为 1cm, RS485 输出测量分辨力为 1mm。

2.额定环境条件

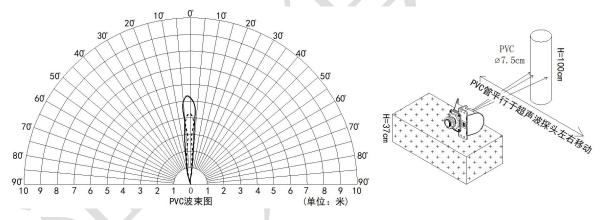
项目	最小值	典型值	最大值	单位	备注
存贮温度	-25	25	70	$^{\circ}\!\mathbb{C}$	
存贮湿度		65%	90%	RH	(1)
工作温度	-15	25	60	$^{\circ}\!\mathbb{C}$	
工作湿度		65%	80%	RH	(2)

- 注: (1)环境温度在 0-39℃时,湿度最高值为 90%(不凝露)。
 - (2) 环境温度在 40-50℃时,湿度最高为当前温度下自然界最高湿度(不凝露)。
 - (3)

3.额定电气条件

参数项		规格				
多数坝	最小值	典型值	最大值	单位	备注	
工作电压	3. 2	5.0	5. 25	V		
峰值电流	30		160	mA	峰峰值	
输入纹波			50	mV	峰峰值	
输入噪声			100	mV	峰峰值	
ESD			$\pm 200/\pm 2K$	V	(1)	
ESD			±4K/±8K	V	(2)	

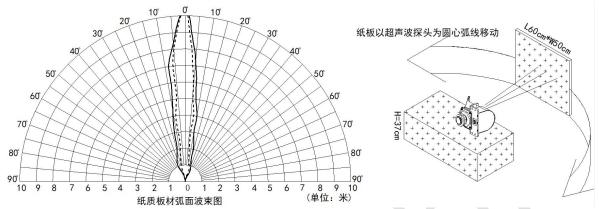
- 注: (1) 装配线体静电规格,接触静电不应高于±200V,空气静电不应高于±2KV。
 - (2) 探头外壳、输出引线符合 IEC61000-4-2 标准。


五 模组选型说明

A17-模组系列根据输出方式和功能的不同分为以下 4 种,用户可根据实际应用需求来选择相对应的型号。可根据客户需求进行定制开发。

系列	型号	功能	输出方式	备注
A17−模组	DYP-A17NYUW-V1.0	测井模式	UART 自动输出	
	DYP-A17NYTW-V1.0		UART 受控输出	
	DYP-A17NYWW-V1.0		PWM 处理值输出	
	DYP-A17NY4W-V1.0		RS485 输出	

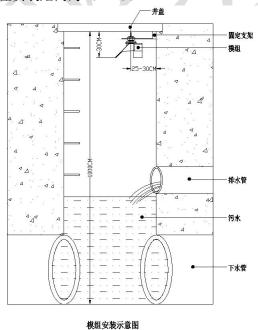
六 有效探测范围参考图


(1)被测试物体为 PVC 材质白色圆柱管,高为 100cm、直径为 7.5cm,下图中实线为模组默认角度测试数据,虚线为小角度模式测试数据。

(2)被测试物体为"瓦楞纸箱"垂直于0°中轴线,长*宽为60cm*50cm,下图中实线为模组默认角度测试数据;虚线为小角度模式测试数据。

(3)被测试物体为"瓦楞纸箱"相切于弧线,长*宽为60cm*50cm,下图中实线为模组默认角度 测试数据;虚线为小角度模式测试数据。

注: 以上为电应普科技实验室测试数据,在实际使用中,产品安装方式、使用环境等各种因素, 可能与实验室数据有所差异,请以实际应用环境检测为准。

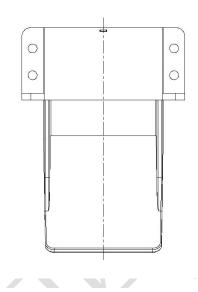

七 安装事宜说明

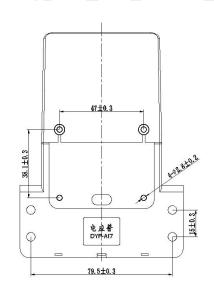
(1) 产品优势

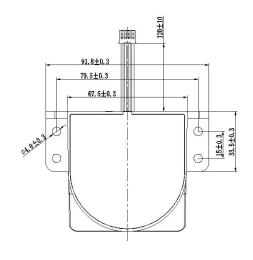
井位检测模组内部程序是根据下水道结构形式进行的算法设计,该模组能有效的过滤井中的 常规设施干扰(阶梯、突出的砖块和石壁、进出水管、井壁小型悬挂物等)从而精准的获取当前 水位,预防积水溢出。

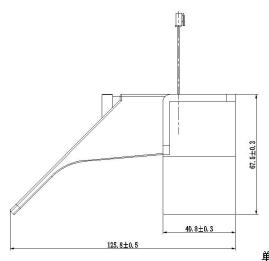
(2) 安装要求

井位检测模组应用场景下图所示,模组的安装最佳位置应远离井壁突出物体(阶梯),选取 最为平坦的井壁一侧作为安装支撑,安装固定后的模组应垂直水面,平行井壁。模组与同侧的井 壁最佳安装距离为 25cm-30cm。

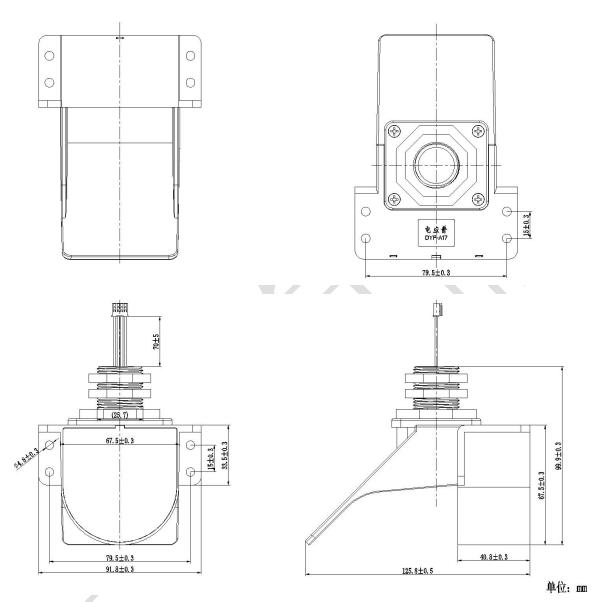

第 13 页


八 注意事项


- 1、设计时请注意结构公差,不合理的结构设计有可能引起模组功能短暂性异常。
- 2、设计时请注意电磁兼容性评估,不合理的系统设计有可能引起模组功能异常。
- 3、涉及产品极限参数边界应用时,可联系本司 FAE 确认相关注意事项。
- 4、本公司保留对此文档更改的权利,功能更新,恕不另行通知。


九 封装尺寸

1.无固定支架



单位: 皿

2.有固定支架

注:固定支架为选配件,默认为无固定支架,如需要固定支架下单备注说明,固定支架安装方式兼容 A07。

十 包装规范

- 1、默认为电应普常规包装方式。
- 2、可根据客户 IQC 相关标准定制包材。
- 3、集装箱运输方式需采用交错拼箱方式,同时需在单栈外缘使用裹膜搭配加强角板的方式以提供。 足够的支撑。