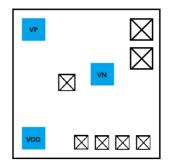


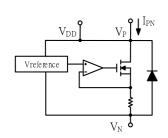
Single Channel Constant Current Regulator

Features

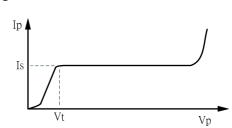
- The most easy used linear constant current LED driver
- 2.6~24V wide supply voltage range supports self-power structure in lighting application
- 20~120mA constant current regulator
- Minimized 0.3~1Voutputdropout voltage
- Fastresponse time, support power supply PWM dimming function
- Less than 0.1%/V line/load regulation
- 125~160°C junction temperature current ramp down thermal protect
- -40~85°C operating temperature


Applications

- Constant Current LED (CCLED)
- Constant Current Light Engine


Dice information

Chip Size: x*y = 525um * 535um


Coordinate	X	Y	Pad size
VP	59.72	458.9	00 + 00
VN	330.58	302.76	80 * 80 (um)
VDD	68.03	76.11	(um)

Block Diagramand Ideal IV characteristic

IV curve

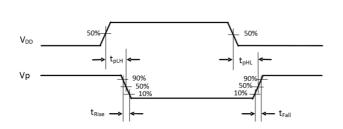
Maximum Ratings (T = 25°C)

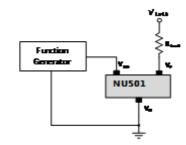
Characteristic	Symbol	Rating	Unit
Supply voltage	V_{DD}	-0.3~28	V
Output voltage	V_{PN}	-0.3~28	V
Operating temperature	T_OPR	-40~+85	°C
Storage temperature	T_{STG}	-55~+150	°C

Protection

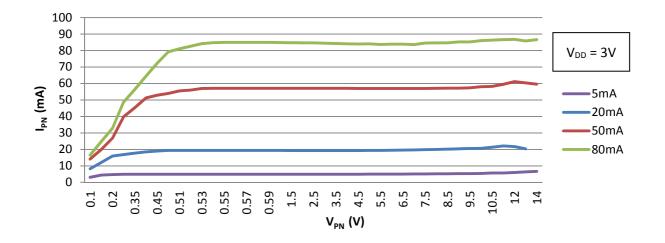
HBM ±8KV ESDsensitivity test passed. MIL-STD classification 3B. Latch up positive/negative I 400mA test passed.

NumEnTech. NU501-1713


Electrical Characteristics and Recommended Operating Conditions

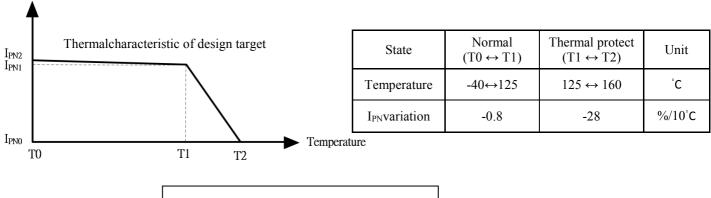

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Working voltage	V_{PNmax}	I _{PN} = I _S	-	-	24	V
Output current	Is	Spec.	10	-	120	mA
Output current skew	I _{Skew}	I _S	-	±0.1	-	%
Line/Load regulation	%/V _P	0.3V > V _{PN} > 24V	-	±0.1	-	%/V

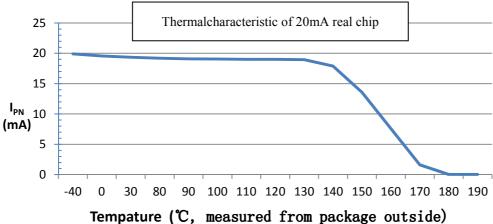
Switching Characteristics (T = 25°C)


Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time V _{DD} from "L" to "H"	t _{рLН}	$V_{PN}=1V$, $V_{DD}=0V \rightarrow 5V$	-	2.2	-	uS
Output current rising time	t _{Rise}	$V_{PN}=1V$, $V_{DD}=0V \rightarrow 5V$	-	1.8	2	uS
Propagation Delay Time VDDfrom "H" to "L"	t _{рНL}	$V_{PN}=1V$, $V_{DD}=5V\rightarrow 0V$	-	500	-	nS
Output current falling time	t _{Fall}	$V_{PN}=1V$, $V_{DD}=5V\rightarrow0V$	-	80	120	nS

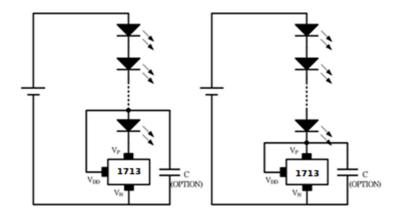
Timing Waveform

I/V curve




NumEnTech. NU501-1713

Thermal protection


 I_{PN}

When junction temperature is more than thermal protection temperature (~125°C), the output current of NU501 will start to decrease to lower down the power dissipation on chip.If the junction temperature reach 160°C, the output current will almost shut down. The output current will restore in the same way when the temperature decrease. Whole serieschips with different output current have the same thermal characteristics.

Application Circuits

Low dropout application $V_{PN_Min} = 0.3V(20mA)$

Normal application $V_{PN_Min} = 2.7V(20mA)$

NumEnTech. NU501-1713

Special Optical Restrictions

The output current of NU501-1713 will drift when NU502-1713 bare die is exposure to the strong light. NU502-1713 bare die should be covered by non-transparent material or mechanical structure to isolate the light.

Restrictions on product use

- NUMEN Tech. reserves the rightto update these specifications in the future.
- The information contained herein is subject to change without notice.
- NUMEN Technology will continually working to improve the quality and reliability of its products. Nevertheless, semiconductor device in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing NUMEN products, to comply with the standards ofsafety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such NUMEN products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that NUMEN products are used within specified operating ranges asset forth in the most recent NUMEN products specifications.
- The NUMEN products listed in this document are intended for usage in general electronics applications(lighting system, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These NUMEN products are neither intended nor warranted for usage in equipment that requiresextraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life orbodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane orspaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of NUMEN products listed in thisdocument shall be made at the customer's own risk.