

1.5µA Low Iq, 300mA Low Noise LDO Regulator

Features

- 1.5µA Quiescent Current Typically
- 70dB PSRR at 1kHz
- Up to 300mA Output Current
- Low Shutdown Current: <0.1µA
- Output Voltage Accuracy: ±2%
- Output Current Limit Protection
- Fixed Output Voltage 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V.
- Stable with Ceramic Output Capacitors
- Thermal Shutdown
- Output Auto-Discharge in EN Shutdown
- Available in SOT23-5 Package

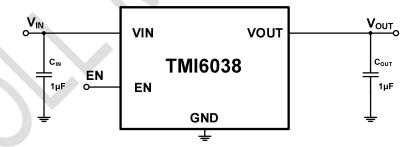
Description

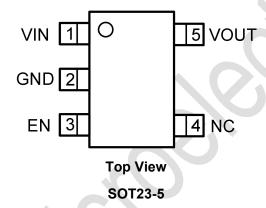
The TMI6038 is a low-dropout regulator with fixed output voltage 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V. It provides up to 300mA output current with input voltage range from 1.7V to 5.5V. It has 1.5µA very low quiescent current and is suitable for battery powered equipment with longer application life. TMI6038 is designed to work with low ESR ceramic capacitors to reduce the amount of the PCB area. The TMI6038 is available in a SOT23-5 RoHS compliant package.

Application

- IP Camera
- Wearable Devices
- Battery Powered Equipment

Typical Application




Figure 1. TMI6038 fixed output Circuit

Absolute Maximum Ratings (Note 1)

Parameter	Min	Max	Unit
Input Supply Voltage and EN	-0.3	6.5	V
All Other Pins Voltage	-0.3	V _{IN}	V
Storage Temperature Range	-65	150	°C
Junction Temperature (Note2)	-	150	°C
Power Dissipation	-	600	mW
Lead Temperature (Soldering, 10s)	-	260	°C

Package

Order Information

Part Number	Package	Top Marking	Quantity/Reel
TMI6038-12	SOT23-5	T6Bxxx	3000
TMI6038-15	SOT23-5	T6Cxxx	3000
TMI6038-18	SOT23-5	T6Dxxx	3000
TMI6038-25	SOT23-5	T6Exxx	3000
TMI6038-28	SOT23-5	T6Fxxx	3000
TMI6038-30	SOT23-5	T6Gxxx	3000
TMI6038-33	SOT23-5	T6Hxxx	3000

TMI6038-XX devices are Pb-free and RoHS compliant.

Pin Functions

Pin	Name	Function
1	VIN	Input Supply of the LDO.
2	GND	Signal Ground.
		Enable Pin. Connect this pin to ground or less than 0.4V to disable the device,
3	EN	connect EN to 1.5V or above to enable the device.
		This pin should not be floated.
4	NC	No connection
5	VOUT	Output of the LDO

ESD Rating

Items	Description	Value	Unit
V _{ESD_HBM}	Human Body Model for all pins	±2000	٧
V _{ESD_CDM}	Charged Device Model for all pins	±1000	V

JEDEC specification JS-001

Recommended Operating Conditions

Items	Description	Min	Max	Unit
Voltage Range	IN	1.7	5.5	٧
TJ	Operating Junction Temperature	-40	125	ů
T _A	Operating Ambient Temperature	-40	125	°C

Thermal Resistance (Note3)

Items	Description	Value	Unit
θЈΑ	Junction-to-ambient thermal resistance	168	°C/W
θ _{JC}	Junction-to-case(top) thermal resistance	62	°C/W
Ψις	Junction-to-case(top) characterization parameter	18	°C/W

Electrical Characteristics

V_{IN}=V_{OUT}+1V or V_{IN}=2.5V (whichever is greater), T_A = 25°C, unless otherwise noted.

* 114 * 001 *	To Tin Elet (mineriere le greater);					
Symbol	Parameter	Conditions	Min	Тур	Max	Units
Input Volta	ge					
V_{IN}	Input Voltage Range (Note 4)		1.7		5.5	V
Iq	Quiescent Current	V _{EN} =2V, No load	0.5	1.5	3.5	μA
I _{SD}	Shutdown Current	V _{IN} =5V, V _{EN} =0V			0.1	μA
PSRR	Power Supply Ripple Rejection	V _{IN} =3.3V, V _{OUT} =2.8V, I _{OUT} =10mA		70		dB
Enable	1			~ (
V _{EN_H}	Enable Input High Voltage		1.5			V
V _{EN_L}	Enable Input Low Voltage		1		0.4	V
I _{EN}	EN Input Current	V _{EN} =V _{IN} =5V	-0.1		0.1	μA
Output Vol	tage					
V _{OUT} %	Output Voltage Accuracy	V _{IN} =V _{OUT} +1V, I _{OUT} =10mA	-2		2	%
V_{LNR}	Output Line Regulation	V _{OUT} +0.5V <v<sub>IN<5.5V, I_{OUT}=10mA</v<sub>		0.01		%/V
V_{LDR}	Output Load Regulation	1mA <i<sub>OUT<300mA, V_{IN}=V_{NOM}+1.0V</i<sub>		3		mV
		V _{OUT} =1.2V		1300		mV
V_{DROP}	Dropout Voltage (Note 5) at I _{OUT} =300mA	V _{OUT} =2.5V		600		mV
		V _{OUT} =3.3V		520		mV
		BW=20Hz to 20kHz,				
V_{NOISE}	Output Noise Voltage	V _{IN} =3.3V, V _{OUT} =2.8V, I _{OUT} =10mA		50		μV _{RMS}
I _{OUTMAX}	Maximum Output Current		300			mA
R _{DIS}	Resistance of Auto-Discharge			100		Ω
Protection		1	1	1	1	1
I _{LIMIT}	Output Current Limit	V _{OUT} = 90% V _{NOR}	350	600		mA
Tsp	Thermal Shutdown Temperature (Note 6)			160		°C
T _{SDHYS}	Thermal Shutdown Hysteresis (Note 6)			20		°C
	solute Maximum Ratings are those value	s boyand which the life	of a do	vice me	v bo in	noired

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + P_D \times \theta_{JA}$.

Note 3: Measured on JESD51-7, 4-layer PCB.

Note 4: The load condition and dropout voltage should be considered in low input voltage application to ensure input voltage have enough headroom for expected load current.

Note 5: The dropout voltage is defined as V_{IN} - V_{OUT} , when V_{OUT} is 98% of the normal value of V_{OUT} .

Note 6: Guaranteed by design.

Block Diagram

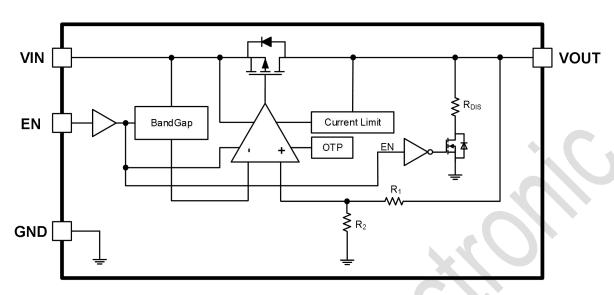
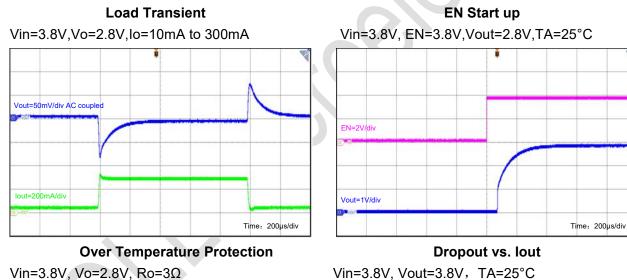
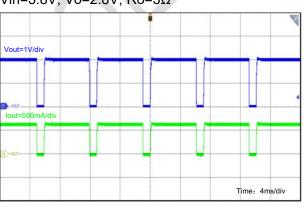
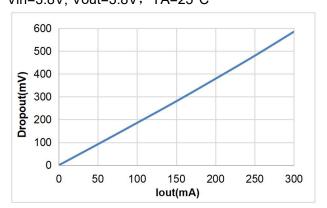
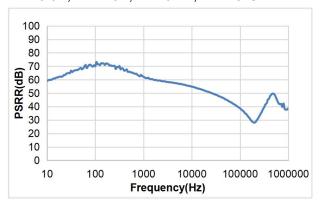
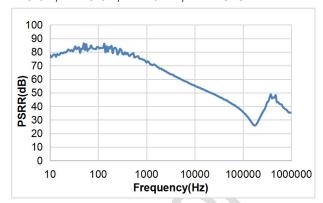





Figure 1. TMI6038-XX Block Diagram

TYPICAL PERFORMANCE CHARACTERISTICS




PSRR vs Frequency

Vin=3.3V, Vo=1.8V, Io=10mA, TA=25°C

PSRR vs Frequency

Vin=5.0V, Vo=3.3V, Io=10mA, TA=25°C

Operation Description

Overview

The TMI6038 is a low quiescent current, 300mA output current, low dropout linear regulator with high PSRR and low Noise performance. TMI6038 provide fixed output voltage with 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V. It is designed to work with low-ESR ceramic capacitor, reducing the amount of the PCB area. Only a 1µF ceramic output capacitor can make the device stable over the whole load range. As shown in the function block diagram, the TMI6038 is composed of the bandgap reference voltage, the error amplifier, P-channel MOSFET pass transistor, internal resistor divider and some additional protection circuits. The reference voltage, connected to the cathode terminal of the error amplifier, compares with the feedback voltage to regulate the output voltage to make it constant over the whole load current range. If the feedback voltage is lower than the reference voltage, the pass transistor gate is pulled lower to increase its conductivity. This allows more current to flow to the output and increase the output voltage. If the feedback voltage is higher than the reference voltage, the pass transistor gate is pulled higher to decrease its conductivity. This allows less current to flow to the output and decrease the

Enable/Shutdown

The TMI6038 is disabled when the EN pin is connected to ground or the voltage less than 0.4V, and the shutdown current is less than $0.1\mu A$. Connect EN pin to 1.5V or higher voltage to enable the device. This EN pin cannot be floated.

output voltage. The feedback point is the output of the internal resistor divider connected to the V_{OUT} pin.

Output Auto Discharge

When the regulator is disabled, an internal 100Ω resister is connected between VOUT and GND to discharge output capacitor C_{OUT} .

Current Limit

The TMI6038 includes a current limit circuit to monitor the gate voltage of the pass transistor to limit the output current. When the output current is higher than the over-current limit, the circuit will clamp the gate voltage of the pass transistor to limit the output current.

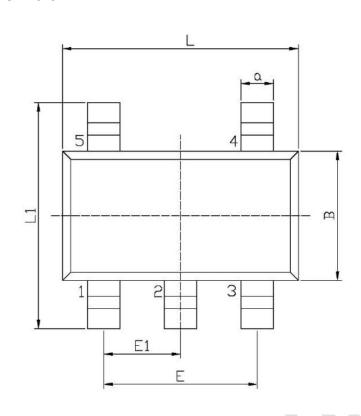
Thermal Shutdown

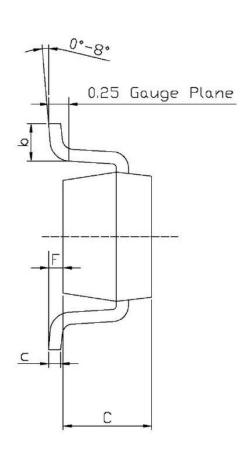
The TMI6038 monitors internal temperature. When the junction temperature exceeds 160°C, the over temperature protection (OTP) circuit turn off the pass transistor until the device is cooled down by 20°C. Then the pass transistor resumes. For continue operation, do not exceed absolute maximum junction temperature.

Application Information

Input capacitor

A $1\mu F$ or higher capacitance value ceramic capacitor is required between the VIN pin and the GND pin. Place it as close as possible to the device. There are no requirements for the ESR on the input capacitor, but the tolerance and temperature coefficient must be considered. The ceramic capacitor with $1\mu F$ or larger rating capacitance, X5R or X7R type dielectrics and 0402 or larger size is recommended as input capacitor.


Output capacitor

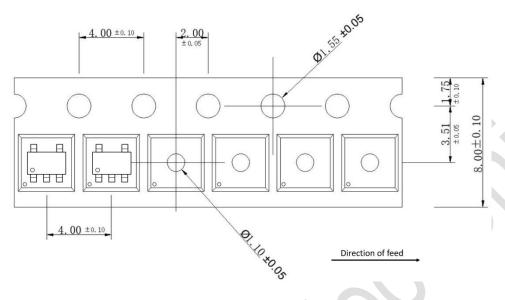

An output capacitor (C_{OUT}) is needed to improve transient response and maintain stability. The TMI6038 is stable with very small ceramic output capacitors. A 1µF to 10µF capacitor is suitable for the most TMI6038 applications. For typical application, the ceramic capacitor with 1µF or larger rating capacitance, X5R or X7R type dielectrics and 0402 or larger size is recommended as output capacitor.

Package Information

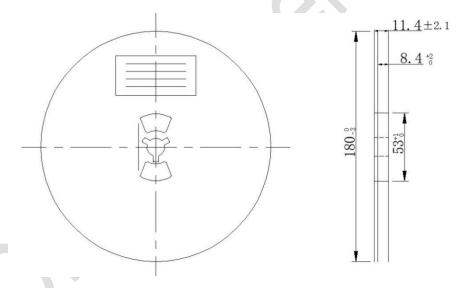
SOT23-5

Unit: mm

Symbol	Dimensions In Millimeters		Symbol	Dimensions In Millimeters		
	Min	Max	Symbol	Min	Max	
L	2.82	3.02	E1	0.85	1.05	
В	1.50	1.70	а	0.35	0.50	
С	0.90	1.30	С	0.10	0.20	
L1	2.60	3.00	b	0.35	0.55	
E	1.80	2.00	F	0	0.15	


Note:

- 1) All dimensions are in millimeters.
- 2) Package length does not include mold flash, protrusion or gate burr.
- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.



Tape and Reel Information

TAPE DIMENSIONS: SOT23-5

REEL DIMENSIONS: SOT23-5

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is level 3.

Important Notification

This document only provides product information. TOLL Microelectronic Inc. (TMI) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

TOLL Microelectronic Inc. (TMI) cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TMI product. No circuit patent licenses are implied.

All rights are reserved by TOLL Microelectronic Inc. http://www.toll-semi.com