SPECIFICATIONS

Customer	时宣
Product Name	Wire Wound SMD Type Power Inductors
Sunlord Part Number	SWCB1305-101MT
Customer Part Number	1

$[\square New Released, \square Revised]$

SPEC No.: SWCB06230005

Rev.	Effective Date	Changed Contents	Change Reasons	Approved By
01	Dec.07,2023	New release	/	Weibei Zhao

[This SPEC is total 9 pages including specifications and appendix.] [ROHS Compliant Parts]

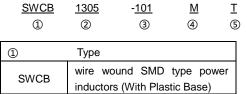
Shenzhen Sunlord Electronics Co., Ltd.

Address: Sunlord Industrial Park, Dafuyuan Industrial Zone, Guanlan, Shenzhen, China518110Tel: 0086-755-29832333Fax: 0086-755-82269029E-Mail: sunlord@sunlordinc.com

[For Customer approval Only] Date: Qualification Status: Full Restricted Rejected				
Approved By	Verified By	Re-checked By	Checked By	
Comments:				

[Precautions]

- (1) Magnetic materials shall be far away from parts to avoid impacts on their electrical characteristics.
- (2) Parts could be damaged by external mechanical pressure or stacked heavy objects, as well as strong shaking & dropping.
- (3) Please do not store parts in bulk to prevent coils and parts being damaged.
- (4) When parts are installed, pressure put on Core shall be no more than 5N. Otherwise, the Core would be damaged or cracked.
- (5) Oversized external force to parts on PCB may lead to parts being damaged or slipped off.
- (6) Please do not use parts on edge or top of PCB board in your design to avoid parts being damaged during PCB is moved.


Sunlord

1. Scope

This specification applies to SWCB1305-101MT of wire wound SMD type power inductors

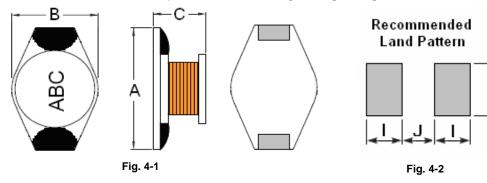
2. Product Description and Identification (Part Number)

- 1) Description
 - Wire Wound SMD Type Power Inductor, SWCB1305, 100μH± 20% @1KHz/0.3V,0.085Ω,2.6 A.
- 2) Product Identification (Part Number)

③ Nominal Inductance		
Example	Nominal Value	
101	100µH	

2	External Dimensions (L X H) (mm)
	1305

④ Inductance Tolerance		
М		±20%

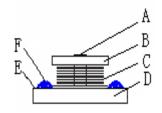

5) Packing		
Т	Tape Carrier Package		

3. Electrical Characteristics

- 1) Operating and storage temperature range (individual chip without packing): -40°C to +105°C
- 2) Storage temperature range (packaging conditions): -10℃~+40℃ and RH 70% (Max.)

4. Shape and Dimensions

1) Dimensions and recommended PCB pattern for reflow soldering: See Fig.4-1, Fig.4-2 and Table 4-1.



-	[Table 4-1]						Unit: mm
	Series	A max.	B max.	C max.	l typ.	J typ.	H typ.
	SWCB1305	13.5	9.5	5.5	2.5	7.2	2.5

2) Structure and Components: See **Table 4-2**

[Table 4-2]

	-	-
Symbol	Components	Material
А	MARK	White Ink
В	DRUM CORE	Ferrite
С	WIRE	Polyurethane Copper Wire
D	BASE	Black Plastic
E	GLUE	Epoxy resin
F	ELECTRODES	Copper plated with Sn

н

5.	Electrical Characteristics					
	Part Number	Inductance	L Test Condition	Max. DC	Max. Saturation	Max. Heat Rating
				Resistance	Current	Current
	Units	μH	Hz, V	Ω	А	А
	Symbol	L	-	DCR	Isat	Irms
	SWCB1305-101MT	100±20%	1k, 0.3V	0.280	1.30	1.20

6. Test and Measurement Procedures

6.1 Test Conditions

6.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:

- a. Ambient Temperature: 20±15°C
- b. Relative Humidity: 65±20%
- c. Air Pressure: 86 KPa to 106 KPa

6.1.2 If any doubt on the results, measurements/tests should be made within the following limits:

- a. Ambient Temperature: 20±2°C
- b. Relative Humidity: 65±5%
- c. Air Pressure: 86KPa to 106 KPa

6.2 Visual Examination

a. Inspection Equipment: 20 X magnifier

6.3 Electrical Test

- 6.3.1 DC Resistance (DCR)
 - a. Refer to Item 5.
 - b. Test equipment (Analyzer): HIOKI3540 or equivalent.
- 6.3.2 Inductance (L)
 - a. Refer to Item 5.
 - b. Test equipment: Wayne kerr3260+3265B or equivalent.
- 6.3.3 Rated Current
 - a. Refer to Item 5.
 - b. Test equipment: Wayne kerr3260+3265B, Agilent E3633A, R2M-2H3 or equivalent..
 - c. Definition of Rated Current (Ir): With the condition of the DC current pass, the inductance decrease by 25% of the standard value, compare to the temperature rise by 40°C, the smaller is Rated Current.(reference environment temperature:20°C)

6.4 Reliability Test

ltem	Requirements	Test Methods and Remarks
6.4.1	No removal or split of the termination or other	① Apply pull force to axis direction.
Terminal Strength	defects shall occur.	② Applied force: 10 N.
		③ Keep time: 10±1s
6.4.2	① No visible mechanical damage.	$(\ensuremath{\underline{1}})$ The test samples shall be soldered to the board. Then it
Vibration	 Inductance change: Within ±5%. 	shall be submitted to below test conditions.
		Fre. Range 10~55Hz
		Total 1.5mm(May not exceed acceleration
		Amplitude 196 m/s ²)
		Sweeping 10Hz to 55Hz to 10Hz for 1 min.
		Method
		Time For 2 hours on each X, Y, Z axis.
		2 Recovery: At least 2 hours of recovery under the standard
		condition after the test, followed by the measurement within
		24 hours.
6.4.3	Inductance change: within ±10%.	 Between -25℃ and +105℃
Temperature		② with a reference value of +20°C
Characteristic		
6.4.4	90% or more of mounting terminal side shall be	e ① Solder Temperature: 240±5°C
Solderability	covered with fresh solder.	② Keep time: 3±0.5s
		③ Immersion depth: from the main bode to 1.5mm

6.4.5 Resistance to Soldering Heat	 No visible mechanical damage. Inductance change: Within ±10%. 	 Re-flowing Profile: Please refer to lower tracing. Test board thickness: 1.0mm Test board material: glass epoxy resin The chip shall be stabilized at normal condition for 1~2 hours before measuring 255°C Peak 255°C max 217°C Max Ramp Up Rate=3°C/sec. Max Ramp Down Rate=6°C/sec. 60~90sec. 150°C 25°C Time 25°C to Peak =8 min max
6.4.6 Thermal Shock	 No visible mechanical damage. Inductance change: Within ±10%. 	 The test samples shall be placed at specified temperature for specified time by step 1 to step 2 as shown in below table in sequence. Step Temperature(°C) Duration(min) -25 30±3 +105 30±3 Transforming interval: Max.20 sec Test cycle: 10cycles. Recovery: At least 2 hours of recovery under the standard condition after the test , followed by the measurement within 24 hours.
6.4.7 Resistance to Low Temperature	 No visible mechanical damage. Inductance change: Within ±10%. 	 ① The test samples shall be submitted to below test conditions. ☐ Temperature -40±3°C ☐ Time 500±24hour ② Recovery: At least 2 hours of recovery under the standard condition after the test, followed by the measurement within 24 hours.
6.4.8 Loading Under Damp Heat	 No visible mechanical damage. Inductance change: Within ±10%. 	 ① The test samples shall be submitted to below test conditions. Temperature 60±2℃ Humidity 90~95%RH Applied current Rated current Time 500±24hour ② Recovery: At least 2 hours of recovery under the standard condition after the test, followed by the measurement within 24 hours.
6.4.9 Resistance to High Temperature	 No visible mechanical damage. Inductance change: Within ±10%. 	 ① The test samples shall be submitted to below test conditions. Temperature 105±3°C Time 500±24hour ② Recovery: At least 2 hours of recovery under the standard condition after the test, followed by the measurement within 24 hours.
6.4.10 Loading at High Temperature (Life Test)	 No visible mechanical damage. Inductance change: Within ±10%. 	 ① The test samples shall be submitted to below test conditions. Temperature 85±3°C Applied current Rated current Time 500±24hour ② Recovery: At least 2 hours of recovery under the standard condition after the test, followed by the measurement within 24 hours.

7. Packaging

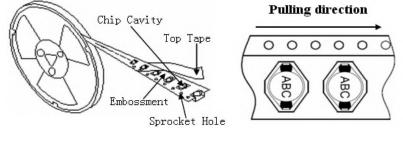
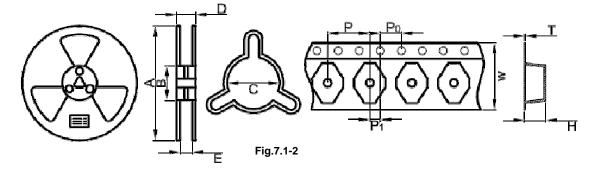
- 7.1 Tape Carrier Packaging:
 - Packaging code: T

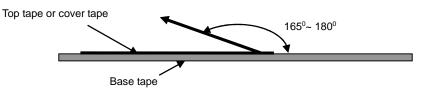
(1) Tape carrier packaging are specified in attached figure Fig.7.1-1~2

(2) Tape carrier packaging quantity:

Туре	SWCB1305
Quantity(Pcs/Reel)	1000

a. Taping Drawings (Unit: mm)


Fig.7.1-1

b. .Reel Dimensions and Taping Dimensions (Unit: mm)

Turne	Reel dimensions (mm)				Tape dimensions (mm)					
Туре	А	В	С	D	Е	W	Р	P0	Н	Т
SWCB1305	330	100	13	30.4	24.4	24.0	12.0	4.0	5.5	0.4

- c. Inner boxes high for 35mm or 40mm, A reel of a box .
- d. Peeling off force: 10gf to 130gf in the direction show below.

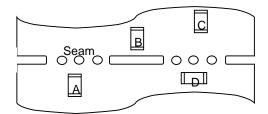
7.2 Storage

- (1) The solderability of the external electrodes may deteriorate if packages are stored in high humidity. Besides, to ensure packing material's good state, packages must be stored at -10°C to 40°C and 70% RH Max.
- (2) The solderability of the external electrodes may deteriorate if packages are exposed to dust of harmful gas (e.g. HCl, sulfurous gas of H₂S).
- (3) Packaging materials may deform if packages are exposed directly to sunlight.
- (4) Minimum packages, such as polyvinyl heat-seal packages shall not be opened until they are used. If opened, use the reels as soon as possible.
- (5) Solderability shall be guaranteed for a period of time from the date of delivery on condition that they are stored at the specified environment. For those parts, which passed more than the time shall be checked solderability before using.
- (6) For magnetic products, keep clear of anything that may generate magnetic fields to avoid change of products performance.
- (7) To avoid any damage to products, do not load mechanic force on products or place heavy goods on products, and exclude strong vibration or drop.
- (8)In case of storage over 12 months, solderability shall be checked before actual usage.

Sunlord

8. Warning and Attentions 8.1 Precautions on Use

- (1) Always wear static control bands to protect against ESD.
- (2) Any devices used with the products (soldering irons, measuring instruments) should be properly grounded.
- (3) Keep bare hands and metal conductors (i.e., metal desk) away from electrodes or conductive areas that lead to electrodes.
- (4) Preheat when soldering.
- (5) Don't apply current in excess of the rated current value. It may reduce the impedance or inductance, or cause damage to components due to over-current.
- (6) For magnetic products, keep clear of anything that may generate magnetic fields such as speakers and coils. Use non-magnetic tweezers when handing the chips.
- (7) When soldering, the electrical characteristics may be varied due to hot energy and mechanical stress.
- (8) When coating products with resin, the relatively high resin curing stress may change the electrical characteristics. For exterior coating, select resin carefully so that electrical and mechanical performance of the product is not affected. Before using, please evaluate reliability with the product mounted in your application set.
- (9) When mount chips with adhesive in preliminary assembly, do appropriate check before the soldering stage, i.e., the size of land pattern, type of adhesive, amount applied, hardening of the adhesive on proper usage and amounts of adhesive to use.
- (10) Mounting density: Add special attention to radiating heat of products when mounting other components nearby. The excessive heat by other products may cause deterioration at joint of this product with substrate.
- (11) Since some products are constructed like an open magnetic circuit, narrow spacing between components may cause magnetic coupling.
- (12) Please do not give the product any excessive mechanical shocks in transportation.
- (13) Please do not touch wires by sharp terminals such as tweezers to avoid causing any damage to wires.
- (14) Please do not add any shock and power to the soldered product to avoid causing any damage to chip body.
- (15) Please do not touch the electrodes by naked hand as the solderability of the external electrodes may deteriorate by grease or oil on the skin.
- 8.2 PCB Bending Design


The following shall be considered when designing and laying out PCB's.

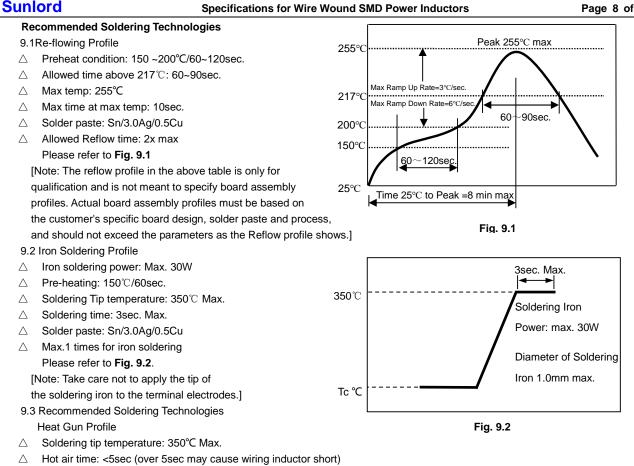
(1) PCB shall be designed so that products are not subjected to the mechanical stress from board warp or deflection.

Products shall be located in the sideways direction to the mechanical stress

(2) Products location on PCB separation.

Product shall be located carefully because they may be subjected to the mechanical stress in order of A>C=B>D.

- (3) When splitting the PCB board, or insert (remove) connector, or fasten thread after mounting components, care is required so as not to give any stress of deflection or twisting to the board. Because mechanical force may cause deterioration of the bonding strength of electrode and solder, even crack of product body. Board separation should not be done manually, but by using appropriate devices.
- 8.3 Recommended PCB Design for SMT Land-Patterns


When chips are mounted on a PCB, the amount of solder used (size of fillet) can directly affect chip performance. Therefore, the following items must be carefully considered in the design of solder land patterns:

- (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets.
- (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed that each component's soldering point is separated by solder-resist.

Recommended land dimensions please refer to product specification.

Specifications for Wire Wound SMD Power Inductors

When repairing or reworking the component near inductors, take over-heat protection for Δ Inductors

10. Solder Volume

9

Solder shall be used not to exceed as shown below. Exceeding solder volume may cause the failure of mechanical or electrical performance.

0 ≤L≤T

(T: height of electrode)

11. Cleaning

Products shall be cleaned on the following conditions:

(1) Cleaning temperature shall be limited to 60°C Max. (40°C Max. for fluoride and alcohol type cleaner.)

(2) Ultrasonic cleaning shall comply with the following conditions, avoiding the resonance phenomenon at the mounted products and PCB. Power: 20W/I Max.

Frequency: 28 KHz to 40 KHz

Time: 5 minutes Max

Notice: Wire wound products do not recommend for ultrasonic cleaning.

(3) Cleaner

a Alternative cleaner Isopropyl alcohol (IPA) HCFC-225

b Aqueous agent

Surface Active Agent Type (Clean through-750H)

Hydrocarbon Type (Techno Cleaner-335)

Higher Alcohol Type (Pine Alpha ST-100S)

- Alkali saponifier Type (X Aqua Cleaner 240)
- X Alkali saponification shall be diluted to 20% volume with de-ionized water.

※ Please contact us before using other cleaner.

- (4) There shall be no residual flux and residual cleaner after cleaning. In the case of using aqueousagent, product shall be dried completely after rinse with de-ionized water in order to remove the cleaner.
- (5) Some products may become slightly whitened. However, product performance or usage is not affected.

Visual inspection standard of product

File No:		Applied to Wire Wound SMD Power Inductor Series				
Effective date:						
No.	Defect Item	Graphic	Rejection identification			
1	Line damage	flatten breach damage	Enamelled copper wire (with the exception of a sold joint), injury, crushing, bending deformation, or othe causes of copper wire bare, reduced cross sections area defects			
2	Wire fracture		Enamelled copper wire is broken			
3	Printing defects	220	Printing defect, can not be correctly identified			
4	Core chipping	220	 length l≥1/8 Upper swing diameter or depth≥1/5 Placed on the thickness width d≥1/10 Upper swing diameter or depth≥1/5 Placed on the thickness 			
5	Tape card feeding		Products in the carrier tape to shake			
6	Mixed material		Different models of product mix			
7	Electrode uneven	hŧ	Single or two electrodes is localized in the same plane, height difference h>0.1mm			